期刊文献+

薄板弯曲分析的节点积分高阶无网格法 被引量:2

High order meshfree method with nodal integration for thin plate bending analysis
下载PDF
导出
摘要 采用高阶无网格法求解薄板弯曲问题,在已发展的线性曲率光顺方案的基础上,通过引入泰勒展开技术,建立了能够精确再现纯弯曲和线性弯曲模式的节点积分方法。与之相比,目前无网格薄板分析主要采用的节点积分方法仅能精确再现纯弯曲模式。数值结果表明,本文方法可精确通过纯弯曲和线性弯曲试验,且能得到光滑、无振荡的弯矩场。与标准的高斯积分方法和目前已存在的节点积分方法相比,本文方法在计算精度、效率以及弯矩分布等方面均展现出显著优势。 In this paper,high order meshfree method is employed to solve thin plate bending problems.Based on the developed linear curvature smoothing scheme,a nodal integration method is established by introducing the Taylor’s expansion technique.The proposed nodal integration method is able to exactly reproduce the pure bending and linear bending modes.In contrast,the existing nodal integration method which dominates meshfree analysis of thin plate bending problems is only able to reproduce the pure bending mode.Numerical results show that the proposed method is able to exactly pass the pure bending and linear bending tests and obtain smooth,oscillation-free distribution of bending moments.In comparison with the standard Gauss integration method and the existing nodal integration method,the presented method shows remarkable advantages in computational accuracy,efficiency and bending moment distributions.
作者 王冰冰 段庆林 李书卉 杨迪雄 WANG Bing-bing;DUAN Qing-lin;LI Shu-hui;YANG Di-xiong(State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,China;State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,China)
出处 《计算力学学报》 EI CAS CSCD 北大核心 2019年第1期103-109,共7页 Chinese Journal of Computational Mechanics
基金 地质灾害防治与地质环境保护国家重点实验室开放基金(SKLGP2016K007) 科学挑战专题(TZ2018002) 中央高校基本科研业务费专项资金(DUT17LK18 DUT18LK04) 水资源与水电工程科学国家重点实验室开放基金(2015SGG03)资助项目
关键词 薄板弯曲 无网格 曲率光顺 节点积分 高阶近似 thin plate bending meshfree curvature smoothing nodal integration high order approximation
  • 相关文献

参考文献5

二级参考文献37

  • 1李聚轩,龙志飞,龙驭球.双二次广义协调矩形元[J].工程力学,1995,12(1):46-52. 被引量:3
  • 2龙驭球,陈晓明,岑松.一个不闭锁和抗畸变的四边形厚板元[J].计算力学学报,2005,22(4):385-391. 被引量:4
  • 3李聚轩,龙驭球.广义协调元方法的收敛性[J].工程力学,1996,13(1):75-80. 被引量:31
  • 4Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: an overview and recent developments[J]. Computer Methods in Applied Mechanics and Engi- neering, 1996,139(1) : 3-47.
  • 5Atluri S N, Shen S P. The Meshless Local Petrov Galerkin (MLPG) Method[M]. Tech Science Press, 2002.
  • 6Li S, Liu W K, Mesh free Particle Methods [M]. Springer, 2004.
  • 7Liu G R. Mesh free Methods: Moving Beyond the Finite Element Method ( 2na Edition ) [ M]. CRC Press, 2009.
  • 8Chen J S,Chi S W,Hu H Y. Recent developments in stabilized Galerkin and collocation meshfree methods [J]. Computer Assisted Mechanics and Engineering Sciences ,2011,18(1) : 3-21.
  • 9Nayroles B, Touzot G, Villon P. Generalizing the fi- nite element method: diffuse approximation and dif- fuse elements[J]. Computational Mechanics, 1992,10 (5):307-318.
  • 10Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994,37 (2) : 229-256.

共引文献42

同被引文献14

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部