期刊文献+

基于决策图的轨迹运动趋势提取 被引量:3

Overall trajectory trend extraction based on decision graph
下载PDF
导出
摘要 在军事应用中,为了提取群体目标的整体运动趋势,提出了一种基于决策图的轨迹聚类来提取轨迹运动趋势的方法。该方法不需要预设参数,且聚类中心的个数既可以通过决策图人工确定,又可以通过数值检测策略自动确定,由此减轻了算法对领域知识的依赖,增强了算法的适用性。仿真实验表明:该方法能正确确定轨迹聚类簇,且对轨迹噪声有一定的抑制作用。 In military application,the trajectories movement trend of the group target reflects its strategic intention to some degree.A trajectory clustering method based on decision graph is proposed to extract the overall motion trend of trajectories.This method does not demand the preset parameters,and the number of clustering centers can be determined manually by decision graph,or automatically determined by a numerical detection strategy,which reduces the dependence on domain knowledge and enhances the applicability of the algorithm.The simulation results show that the proposed method can correctly determine the trajectory clustering clusters and has some inhibitory effect on the trajectory noise.
作者 何爱林 刘忠 杨敏 孙洋 HE Ai-lin;LIU Zhong;YANG Min;SUN Yang(College of Weaponry Engineering,Naval Univ.of Engineering,Wuhan 430033,China;Unit No.91650,Guangzhou 510200,China;Unit No.92956,Dalian 116000,China)
出处 《海军工程大学学报》 CAS 北大核心 2019年第1期107-112,共6页 Journal of Naval University of Engineering
关键词 轨迹聚类 决策图 聚类中心 自动确定 运动趋势 trajectory clustering decision graph clustering center automatic determination motion trend
  • 相关文献

参考文献2

二级参考文献16

  • 1陈继东,孟小峰,赖彩凤.基于道路网络的对象聚类[J].软件学报,2007,18(2):332-344. 被引量:29
  • 2LEE J G, HAN J W, WHANG K Y. Trajectory clustering: a partition-and-group framework[A]. Proceedings of the 2007 ACM SIG-MOD International Conference on Management of Data[C]. Beijing, China, 2007. 593-604.
  • 3CHANG C, ZHOU B Y. MuM-granularity visualization of trajectory clusters using sub-trajectory clustering[A]. Proceedings of the 7th IEEE International Conference on Data Mining Workshops[C]. Miami, Florida, USA, 2009. 577-582.
  • 4KREVELD M V, LUO J. The definition and computation of trajectory and sub-trajectory similarity[A]. Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems[C]. Seattle, Washington, USA. 2007. 324-327.
  • 5PELEKIS N, KOPANAKIS I, MARKETOS G, et al. Similarity search in trajectory databases[A]. Proceedings of the 14th International Symposium on Temporal Representation and Reasoning[C]. Washington, DC, USA, 2007. 129-140.
  • 6MICHAIL V, MARIOS H, DIMITRIOS G Indexing multidimensional time-series[J]. The International Journal on Very Large Data Bases, 2006, 15(1): 1-20.
  • 7GAFFNEY S, SMYTH E Trajectory clustering with mixtures of regression models[A]. Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C]. San Diego, California, USA, 1999.63-72.
  • 8TSUMOTO S, HIRANO S. Behavior grouping based on trajectory mining[A]. Social Computing and Behavioral Modeling[C]. Springer Press, German, 2009. 219-226.
  • 9LI X L, HAN J W, LEE J G, et al. Traffic density-based discovery of hot routes in road networks[A]. Proceedings of the 10th International Conference on Advances in Spatial and Temporal Databases[C]. Boston, MA, USA, 2007. 441-459.
  • 10YUTAKA Y, TETSUJI S. Clustering multidimensional trajectories based on shape and velocity[A]. Proceedings of the 22nd International Conference on Data Engineering Workshops[C]. Washington, DC, USA, 2006. 12-22.

共引文献76

同被引文献45

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部