期刊文献+

基于动态时间弯曲算法的核电厂瞬态识别方法研究 被引量:2

A Dynamic Time Warping Algorithm Based Transient Identification Method in Nuclear Power Plants
下载PDF
导出
摘要 目的对核电厂运行瞬态识别进行有效识别。方法基于动态时间弯曲算法,计算运行瞬态中温度、压力和流速数据与设计瞬态中对应数据之间的相似程度,通过定义等效相似度反应温度、压力和流速的不同权重。在完成当前运行瞬态与各条设计瞬态之间的相似程度后,通过比较相似度值,将运行瞬态归类为设计瞬态。结果通过对"华龙一号"核电厂的设计瞬态和基于设计瞬态摄动获得的虚拟运行瞬态进行验证,文中提出的方法能够快速有效地对运行瞬态进行分类,结果显示,有95%以上的运行瞬态能够被正确识别。结论基于动态时间弯曲算法和等效相似度建立的瞬态识别方法具有高效、准确等优点,能够有效应用于核电厂的疲劳监测系统。 Objective To identify the transients in the nuclear power plant effectively.Methods Based on the dynamic time warping algorithm,the similarity between the temperature,pressure and flow rate in the operational transient and these in the design transient was calculated,respectively.Meanwhile,an effective similarity for the transient was defined to represent the different weight factor of temperature/pressure and flow rate.After the effective similarities for all the design transients were calculated,the current operational transient can be classified in to the best similar design transient.Results The design transient of Hualong 1 nuclear power plant and virtual operation transient obtained based on disturbance of design transient verified that the method proposed in this paper could effectively classify the operation transient.In the verification,more than 95% transients could be identified correctly.Conclusion Based on the DTW based algorithm and effective similarity,a transient identification method is proposed in present paper,this method is effective and accurate,and can be used in the fatigue monitor system of nuclear power plant.
作者 白晓明 王新军 艾红雷 卫东 郑连纲 谢海 BAI Xiao-ming;WANG Xin-jun;AI Hong-lei;WEI Dong;ZHENG Lian-gang;XIE Hai(Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China,Chengdu 610213,China;Nuclear and Radiation Safety Center,Beijing 100010,China)
出处 《装备环境工程》 CAS 2019年第2期82-85,共4页 Equipment Environmental Engineering
关键词 瞬态识别 疲劳监测 核电厂 动态时间弯曲 transient identification fatigue monitor nuclear power plant dynamic time warping
  • 相关文献

参考文献2

二级参考文献23

  • 1CHRISTOFFER GOTTLIEB,NINOS GARIS,毛辉辉(译),董化平(校).基于SVM的核电厂瞬态识别可行性研究[J].国外核动力,2007,28(1):12-21. 被引量:1
  • 2Roverso D. Plant diagnostics by Transient Classification: The Aladdin Approach [J]. International Journal of Intelligent Systems, 2002, 17(8): 767-790.
  • 3Chang Y, Huang X, Hao Y, et al. Linear Representation and Sparse Solution for Transient Identification in Nuclear Power Plants [J]. IEEE Transactions on Nuclear Science, 2013, 60:319-327.
  • 4Medeiros J A C C, Schirru R. Identification of Nuclear Power Plant Transients Using the Particle Swarm Optimization Algorithm [J]. Annals of Nuclear Energy, 2008, 35:576-582.
  • 5Zio E, Baraldi P. Identification of Nuclear Transients Via Optimized Fuzzy Clustering [J]. Annals of nuclear Energy, 2005, 32(10): 1068-1080.
  • 6Schirru R, Martinez A S, Pereira C M N A, et al. Intelligent Soft Computing in Nuclear Engineering in Brazil [J]. Progress in Nuclear Energy, 1999, 35(3-4): 367-391.
  • 7Zio E, Baraldi P, Pedroni N. Selecting Features for Nuclear Transients Classification by Means of Genetic Algorithms[J]. IEEE Transactions on Nuclear Science, 2006, 53(3): 1479-1493.
  • 8Nicolau A D S, Schirru R, Meneses A A M. Quantum evolutionary Algorithm Applied to Transient identification of a Nuclear Power Plant[J]. Progress in Nuclear Energy, 2011,53(1): 86-91.
  • 9Mol A, Almeida J, Pereira C, et al. Neural and Genetic-Based Approaches to Nuclear Transient Identification Including 'don't Know' Response [J]. Progress in Nuclear Energy. 2006, 48: 268-282.
  • 10MA J, JIANG J. Applications of fault detection and diagnosis methods in nuclear power plant: A review[J]. Progress in Nuclear Energy, 2011, 53(3) : 255-266.

共引文献3

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部