期刊文献+

基于樽海鞘群体优化非负矩阵分解的高光谱图像解混算法 被引量:9

Hyperspectral Images Unmixing Based on Nonnegative Matrix Factorization Optimized by Salp Swarm Algorithm
下载PDF
导出
摘要 针对鲁棒非负矩阵分解应用于高光谱图像处理时,存在对初始值的敏感性,求解目标函数时易陷入局部最优的缺点,提出基于樽海鞘群体优化鲁棒非负矩阵分解的高光谱图像解混算法.该算法基于鲁棒线性混合模型,在RNMF框架下,采用樽海鞘群体算法取代乘法迭代策略,以增强算法全局搜索能力,在约束空间内随机搜索满足目标函数的全局最优解,可有效地完成非线性高光谱图像解混.仿真数据与真实遥感数据实验结果表明,本文算法在处理高光谱图像时,能够有效地避免RNMF算法易陷入局部最优解的局限性,具有更好的解混性能. In order to solve the problem that robust nonnegative matrix factorization is sensitive to the initial values and usually trapped in a local optimum when applied to hyperspectral images processing,a new hyperspectral image unmixing algorithm based on robust nonnegative matrix factorization optimized by salp swarm algorithm is proposed.The algorithm is based on robust linear mixed model.Under the framework of robust nonnegative matrix factorization,the global search capability is enhanced by replacing the multiplicative iteration strategy with the salp swarm optimization algorithm,the global optimal solution satisfying the objective function is randomly searched in the constrained space.And then,the hyperspectral image unmixing is effectively fulfilled.The experimental results on synthetic data and real remote sensing data indicate that the algorithm proposed can effectively avoid the limitation of RNMF falling into the local optimal solution,which has better performance of unmixing.
作者 刘森 贾志成 陈雷 郭艳菊 Liu Sen;Jia Zhicheng;Chen Lei;Guo Yanju(College of Electronic Information Engineering,Hebei University of Technology,Tianjin 300401;College of Precision Instrument and Opto-Electronic Engineering,Tianjin University,Tianjin 300072;College of Information Engineering,Tianjin University of Commerce,Tianjin 300134)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第2期315-323,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61401307) 中国博士后科学基金(2014M561184) 天津市应用基础与前沿技术研究计划项目(15JCYBJC17100) 河北省高等学校科学技术研究项目(ZD2018045) 天津市企业科技特派员项目(18JCTPJC57500)
关键词 高光谱图像 非线性解混 鲁棒线性混合模型 群智能优化 樽海鞘群体算法 hyperspectral image nonlinear unmixing robust linear mixing model swarm intelligence optimization salp swarm algorithm
  • 相关文献

参考文献3

二级参考文献26

  • 1余旭初,冯伍法,林丽霞.高光谱──遥感测绘的新机遇[J].测绘科学技术学报,2006,23(2):101-105. 被引量:24
  • 2杨国鹏,余旭初.高光谱遥感影像的广义判别分析特征提取[J].测绘科学技术学报,2007,24(2):130-132. 被引量:7
  • 3Chang C-I.Hyperspectral imaging:techniques for spectral detection and classification[M].New York:Plenum,2003.
  • 4Keshava N.A survey of spectral unmixing algorithms[J].Lincoln Lab.J.,2003,14(1):55-73.
  • 5Li J,Bioucas-Dias J M.Minimum Volume simplex analysis:a fast algorithm to unmix hyperspectral data[C].Boston:IEEE Geosci.Remote Sens.Symp.,2008,3:250-253.
  • 6Winter M E.N-find:an algorithm for fast autonomous spectral endmember determination in hyperspectral data[C].Denver:Proc.of the SPIE conference on imavng spectrometry Ⅴ,1999,3753:266-275.
  • 7Nascimento J,Bioueas-Dias J M.Vertex component analysis:a fast algorithm to unmix hyperspectral data[J].IEEE Trans.Geosci.Remote Sens.,2002,43(4):898-910.
  • 8Chang C-I,Wu C-C,Liu W,et al.A new growing method for simplex-based endmember extraction algorithm[J].IEEE Trans.Geosci.Remote Sens.,2006,44(10):2804-2819.
  • 9Tao X,Wang B,Zhang L.Orthogonal bases approach for decomposition of mixed pixels for hyperspectral imagery[J].IEEE Geosci.Remote Seas.Lett.,2009,6(2):219-223.
  • 10Lee D D,Seung H S.Learning the parts of objects by nonnegative matrix factorization[J].Nature,1999,401:788-791.

共引文献23

同被引文献56

引证文献9

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部