期刊文献+

Twisted optical communications using orbital angular momentum 被引量:15

Twisted optical communications using orbital angular momentum
原文传递
导出
摘要 Angular momentum, a fundamental physical quantity, can be divided into spin angular momentum(SAM) and orbital angular momentum(OAM) in electromagnetic waves. Helically-phased or twisted light beams carrying OAM that exploit the spatial structure physical dimension of electromagnetic waves have benefited wide applications ranging from optical manipulation to quantum information processing. Using the two distinct properties of OAM, i.e., inherent orthogonality and unbounded states in principle, one can develop OAM modulation and OAM multiplexing techniques for twisted optical communications. OAM multiplexing is an alternative space-division multiplexing approach employing an orthogonal mode basis related to the spatial phase structure. In this paper, we review the recent progress in twisted optical communications using OAM in free space and fiber. The basic concept of momentum, angular momentum, SAM, OAM and OAM-carrying twisted optical communications,key techniques and devices of OAM generation/(de)multiplexing/detection, high-capacity spectrally-efficient free-space OAM links, fiber-based OAM links, and OAM processing functions are presented. Ultra-high spectral efficiency and petabit-scale freespace data links are achieved benefiting from OAM multiplexing. The key techniques and challenges of twisted optical communications are also discussed. Twisted optical communications using OAM are compatible with other existing physical dimensions such as frequency/wavelength, amplitude, phase, polarization and time, opening a possible way to facilitate continuous increase of the aggregate transmission capacity and spectral efficiency through N-dimensional multiplexing. Angular momentum, a fundamental physical quantity, can be divided into spin angular momentum(SAM) and orbital angular momentum(OAM) in electromagnetic waves. Helically-phased or twisted light beams carrying OAM that exploit the spatial structure physical dimension of electromagnetic waves have benefited wide applications ranging from optical manipulation to quantum information processing. Using the two distinct properties of OAM, i.e., inherent orthogonality and unbounded states in principle, one can develop OAM modulation and OAM multiplexing techniques for twisted optical communications. OAM multiplexing is an alternative space-division multiplexing approach employing an orthogonal mode basis related to the spatial phase structure. In this paper, we review the recent progress in twisted optical communications using OAM in free space and fiber. The basic concept of momentum, angular momentum, SAM, OAM and OAM-carrying twisted optical communications,key techniques and devices of OAM generation/(de)multiplexing/detection, high-capacity spectrally-efficient free-space OAM links, fiber-based OAM links, and OAM processing functions are presented. Ultra-high spectral efficiency and petabit-scale freespace data links are achieved benefiting from OAM multiplexing. The key techniques and challenges of twisted optical communications are also discussed. Twisted optical communications using OAM are compatible with other existing physical dimensions such as frequency/wavelength, amplitude, phase, polarization and time, opening a possible way to facilitate continuous increase of the aggregate transmission capacity and spectral efficiency through N-dimensional multiplexing.
作者 Jian Wang
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2019年第3期1-21,共21页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Basic Research Program of China(Grant No.2014CB340004) the National Natural Science Foundation of China(Grant Nos.11574001,61761130082,11774116,11274131,and61222502) the Royal Society-Newton Advanced Fellowship the National Program for Support of Top-notch Young Professionals the Yangtze River Excellent Young Scholars Program,the Natural Science Foundation of Hubei Province of China(Grant No.2018CFA048) the Program for HUST Academic Frontier Youth Team
关键词 fiber OPTICAL COMMUNICATIONS FREE-SPACE OPTICAL COMMUNICATIONS modulation MULTIPLEXING orbital angular momentum space-division MULTIPLEXING spectral efficiency TWISTED OPTICAL COMMUNICATIONS TWISTED LIGHT structured LIGHT fiber optical communications free-space optical communications modulation multiplexing orbital angular momentum space-division multiplexing spectral efficiency twisted optical communications twisted light structured light
  • 相关文献

同被引文献40

引证文献15

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部