期刊文献+

多阶段间歇过程无穷时域优化线性二次容错控制 被引量:1

Infinite horizon linear quadratic hybrid fault-tolerant control for multi-phase batch process
下载PDF
导出
摘要 针对具有输入时滞的多阶段间歇过程,考虑执行器故障影响,提出了无穷时域优化混杂容错控制器设计方法。该方法首先将给定具有输入时滞的模型转化为新的无时滞的状态空间模型,接着再将此模型转换为包含状态变量误差和输出跟踪误差的扩展状态空间模型,并用切换系统模型表示,然后引入有限时域的二次目标函数,利用最优控制理论,设计出在无穷时域中容错控制器。为获得最小运行时间,针对不同阶段设计依赖于Lyapunov函数的驻留时间方法。创新之处在于,控制律设计简单,计算量小,且每一阶段时间求取不需要引用任何其他变量,简单易行。最后,以注塑成型过程为例,仿真结果证明所提出方法具有可行性和有效性。 A hybrid fault-tolerant controller with infinitely adjustable time-domain parameters is designed to ensure fault-tolerant control performance.Firstly a multi-phase state space model by acquiring input and output data is established,and further the state space model is into transformed an extended state space model containing state variables and output tracking errors,and the switched system model is used to represent it,so as to design the controller in an infinite horizon.Then,to obtain the minimum running time,the dwell time method depending on the Lyapunov function is proposed for different stages.Finally,taking the injection molding process as an example,the system simulation is carried out.The simulation shows that the proposed method is feasible and effective.
作者 王立敏 卢丽彬 高福荣 周东华 WANG Limin;LU Libin;GAO Furong;ZHOU Donghua(School of Mathematics and Statistics,Hainan Normal University,Haikou 571158,Hainan,China;Department of Chemical and Biomolecular Engineering,Hong Kong University of Science and Technology,Hong Kong,China;College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao 266590,Shandong,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2019年第2期541-547,共7页 CIESC Journal
基金 国家自然科学基金项目(61773190)
关键词 间歇过程 切换系统 过程控制 控制 系统工程 执行器故障 batch processes switched systems process control control systems engineering actuator failure
  • 相关文献

参考文献1

二级参考文献29

  • 1Korovessi, E., Linninger, A.A., Batch Processes, CRC/Taylor and Francis, Boca Raton, FL (2006).
  • 2Anon., “Automatic control of batch-process temperature”, Food Ind., 8 (5), 237-244 (1936).
  • 3Yu, J., Qin, S.J., “Multiway Gaussian mixture model based umltiphase batch process monitoring”, Ind. Eng. Chem. Res., 48, 8585-8594 (2009).
  • 4Zhao, C.H., Mo, S.Y., Gao, F.R., Lu, N.Y., Yao, Y., “Statistical analysis and online monitoring for handling multiphase batch processes with varying durations”, Journal of Process Control, 21, 817-829 (2011).
  • 5Ye, D., Yang, G.H., “Delay-dependent reliable H∞ control for linear time-varying delay systems via adaptive approach”, American Control Conference, 3991-3996 (2007).
  • 6Wang, Y.Q., Zhou, D., Gao, F., “Iterative learning fault-tolerant control for batch processes”, Ind. Eng. Chem. Res., 45, 9050-9060 (2006).
  • 7Wang, Y.Q., Zhou, D., Gao, F., “Iterative learning reliable control of batch processes with sensor faults”, Control Engineering Science, 63, 1039-1051 (2008).
  • 8Wang, Y.Q., Zhou, D., Gao, F., “Active fault-tolerant control of nonlinear batch processes with sensor faults”, Ind. Eng. Chem. Res., 46, 9158-9169 (2007).
  • 9Gao, F., Yang, Y., Shao, C., “Robust iterative learning control with applications to injection molding process”, Chem. Eng. Sci., 56, 7025-7034 (2001).
  • 10Xiong, Z., Zhang, J., “Product quality trajectory tracking in batch processes using iterative learning control based time-varying perturbation models”, Ind. Eng. Chem. Res., 42 (26), 6802-6814 (2003).

共引文献10

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部