期刊文献+

蒸汽发生器管板疲劳分析中若干影响因素的分析

Analysis on Several Influencing Factors in Fatigue Analysis of Steam Generator Tube Sheet
下载PDF
导出
摘要 蒸汽发生器是压水堆核电厂的关键核设备,研究核安全级设备的疲劳特性是保障核电安全的关键所在。蒸汽发生器的管板为排布有密集深孔的大型锻件,其制造难度高,生产周期长。在设备运行期间经历复杂而全面的载荷,针对蒸汽发生器管板,根据ASME B&PV Code III-1-NB要求和规定,进行疲劳分析的多种对比计算。以考察管板组合体应力分布对瞬态条件、材料不连续、孔板应力修正方法和孔桥超差的敏感性,最终确定合理的分析方法,为今后蒸汽发生器结构应力分析提供方法参考,而且更重要的,为处理管板制造过程中经常发生的孔桥超差不符合项提供评定的数据依据和计算的方法。 The Steam Generator is the key equipment of the PWR nuclear power plant,the fatigue behavior study on the nuclear safety grade equipment is pivotal for nuclear safety.We focus on the steam generator tube sheet in this paper,which is a complicated structure and undergoes a variety of load.Some comparative fatigue analysis are performed to find out different influencing factors,including different disposals of reactor coolant system design transients,different treatment of material discontinuity,different stress multipliers for equivalent plate stress,different size of tube hole ligament.The appropriate fatigue method is obtained via the above comparative analyses.Even more importantly,the data basis for assessment is available when a tube hole ligament NRC(Non Conformance Report)is happened during the manufacture of the tube sheet.
作者 刘畅 邓晶晶 梁星筠 LIU Chang;DENG Jingjing;LIANG Xingyun(Shanghai Nuclear Engineering Research & Design Institute Co.,Ltd.,Shanghai 200233,China)
出处 《机械工程师》 2019年第2期153-156,共4页 Mechanical Engineer
基金 大型先进压水堆及高温气冷堆核电站重大专项(2014ZX06002001)
关键词 疲劳分析 瞬态条件 应力修正 材料不联系 孔桥超差 fatigue analysis transient treatment stress multiplier material discontinuity ligament NCR
  • 相关文献

参考文献2

二级参考文献11

  • 1Kussmaul K,Bliand D,Jansky J. Crack in Ferritic Feedwater Piping System of Boiling water Reactor[ C]. Structural Integrity of Light water Reactor Components, 1952 151 - 166.
  • 2Braschal R, Mickch M,Schucktanz G. Thermal Stratification in Steam Generator Feedwater Lines [ J ]. Transactions of the ASME, 1984,106:78 - 85.
  • 3Thurman A L, Mahlab M S, Boylskin R E. 3 - D Finite Element Analysis for the Investigation of Feedwater Line Cracking in PWR Steam Generator[ J]. ASME paper No. 81-PVP-3:21-25.
  • 4Shvarts Simon, Gerber David, Hous Ken Development of Methodology for Evaluating and Monitoring Steam Generator Feedwater Nozzle Cracking in PWRs [ J ]. ASME Pressure Vessels Piping Div Pub PVP, 1994. 283:97 -109.
  • 5Wyang N J, Klarner R. A Transient Thermal Hydraulic Simulation of a Steam Generator Feedwater Header [J ]. International Conference on Nuclear Engineering, 1996,5: 397 - 402.
  • 6Kim Yong wan, Kim Dong OK, Lee Jae Seon. A thermo - mechanical Analysis for a Nozzle Header of a once - Through Steam Generator Designed for an Integral Reactor. [ J] Proc. Int. Congr. Adv. Nucl. Power Plants ICAPP. 2004. 602 - 609.
  • 7Crandford E L, Gray M A, Sahgal S. Predicting Steam Generator Auxiliary Feedwater Nozzle ThermalStratification Transients and Fatigue Effects in Complex Systems [ J]. ASME Pressure Vessels Piping Div. Publ, PVP. 2005,7:369 - 374.
  • 8ASME锅炉及压力容器规范第Ⅲ卷第一册-NB分卷[S].1995.
  • 9美国机械工程师协会.ASMEBPVC-Ⅲ核设施部件建造规则:第1册附录[S].上海:上海科学技术文献出版社,2004.
  • 10美国机械工程师协会.ASMEBPVC-Ⅲ核设施部件建造规则:第1册NB分卷[S].上海:上海科学技术文献出版社,2004.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部