期刊文献+

预混段出口角度对旋流预混燃烧特性影响

Numerical simulation of influence of premixed section exit angle on swirl premixed combustion characteristics
下载PDF
导出
摘要 采用数值模拟研究了预混段出口角度对某燃气轮机燃烧室旋流预混燃烧特性的影响,分析了不同预混段出口角度下燃烧室内的流场、温度场、CH4分布及NOx生成特性。结果表明:随着预混段出口角度的增大,轴向速度减小,回流速度下降,预混段出口处回流区变宽,总回流区面积减小,角回流区逐渐消失,回流强度减弱;CH4逐渐向角回流区扩散,火焰长度有所延长,高温区范围扩大,出口处NOx摩尔分数逐渐升高,而CO摩尔分数变化则相反;在进口参数相同的情况下,最为合理的预混段出口角度为12°。 Numerical simulation was conducted to investigate the effect of the premixed section exit angle on swirling premixed combustion characteristics of a gas turbine combustor, and the flow field, temperature field,CH4 distribution and NO_x generation characteristics in the combustion chamber at different exit angles of the premixed section were analyzed. The results show that, as the angle of exit of the premixed section increases, the axial velocity decreases, the reflux velocity reduces, the recirculation zone at the exit of the premixed zone broadens, the area of the total recirculation zone decreases, the angular recirculation zone disappears gradually,and the reflow intensity weakens. CH4 gradually diffused into the corner recirculation zone, the length of the flame extended, the range of the high-temperature zone expanded, and the NO_x mole fraction at the outlet gradually increased, while the CO mole fraction changed the opposite. In the case with the same inlet parameters,the most reasonable premixed section exit angle is 12°.
作者 付忠广 宋家胜 FU Zhongguang;SONG Jiasheng(Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University,B eijing 102206, China)
出处 《热力发电》 CAS 北大核心 2019年第2期31-38,共8页 Thermal Power Generation
基金 北京市自然科学基金面上项目(3162030)~~
关键词 燃气轮机 燃烧室 旋流预混燃烧 预混段出口角度 回流区 NOX排放 gas turbine com bustion chamber sw irl prem ixed com bustion prem ixed section exit angle recirculation area NOx em ission
  • 相关文献

参考文献6

二级参考文献71

  • 1谢刚,李宇红,祁海鹰.DLN燃烧室的燃料-空气预混均匀性研究[J].工程热物理学报,2006,27(z2):227-230. 被引量:13
  • 2中国电力企业联合会.电力工业“十二五”规划滚动研究综述报告[R].2012.
  • 3Victor de Biasi. 1600 C - Class M5OIJ plant reated 460MW and over 61% efficiency [ J ]. Gas Turbine World, 2010,40 (5) : 10 - 14.
  • 4Han, J. C. , Dutta, S. , Ekkad, S. Gas Turbine Heat Transfer and Cooling Technology [ M ]. Taylor & Francis, 2001.
  • 5Mongia, H. Perspective of combustion modeling for gas turbine combustors[ C]. Nevada, 42nd AIAA Aerospace Sciences Meet- ing and Exhibit Reno, 2004:1759 -1791.
  • 6Kexin Liu, John P. Wood , Eoghan R Buchanan. Biodiesel as an alternative fuel in Siemens dry low emissions combustors: Atmos- pheric and high pressure rig testing[ J]. Journal of Engineering for Gas Turbines and Power, 2010, 132 ( 1 ), Article number: 011501.
  • 7A.P. DoMing, A. S. Morgans. Feedback control of combustion oscillations[ J]. Annual Review of Fluid Mechanics, 2005, 37 (1) :151 -182.
  • 8Junior Isles. Validation tests of 50Hz 8000H plant confirm 60. 75% efficiency[ J]. Gas Turbine World, 2011,41 (4) :14 -17.
  • 9Bancalari E,Chan P,Diakunchak I S.Advanced hydrogen gas turbine development program[C]//ASME Turbo Expo 2007:Power for Land,Sea,and Air.American Society of Mechanical Engineers,2007:977-987.
  • 10Advanced IGCC/H2 Gas Turbine Development[R]. European Commission:Framework Programmes for Research and Technological Development,2006.

共引文献239

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部