摘要
目前大部分高校图书馆都只有对热门图书的推荐,同质化现象比较严重。而读者面对图书馆海量图书往往无从下手,使用推荐系统能很好地解决这一问题,使用Python进行数据分析与处理,基于以往的读者借阅数据,构建评分矩阵,给出个性化推荐,同时借助matplotlib将结果可视化。
At present, most university libraries only recommend popular books, and the phenomenon of homogenization is serious. The readers often have no way to choose right books from huge number of books. The recommendation system can solve this prob. lem well. Uses Python for data analysis and processing, based on the previous readers borrowing data, constructs a scoring matrix and gives personalized recommendations, visualizes the results by Matplotlib.
作者
刘涛
LIU Tao(Department of Computer Engineering, Nanjing Institute of Technology, Nanjing 211167)
出处
《现代计算机》
2019年第2期87-90,共4页
Modern Computer
基金
南京工程学院大学生科技创新基金(No.TB201607004)
关键词
图书推荐
评分矩阵
相似度
协同过滤
Book Recommendation
Scoring Matrix
Similarity
Collaborative Filtering