期刊文献+

石墨负极对锂电池低温充电性能的影响 被引量:4

Effect of Graphite Anode on Low Temperature Charging Performance of Lithium Battery
下载PDF
导出
摘要 通过对常规片层状人造石墨负极(XFH)和二次造粒石墨负极(SS)低温充电性能研究,提出了锂电池低温析锂的相关表征方法。研究表明,与常规负极相比,二次造粒石墨负极更有利于锂电池低温充电性能的提高。SS负极材料-10℃,0.1C/0.5C循环50周后低温放电容量保持率高达100.12%,低温循环后具有较高的容量恢复率(100%),且二次造粒负极材料电池高温55℃,1C循环788周容量保持率90.62%,高温55℃搁置7天后荷电保持率为96.14%,容量恢复率为98.04%,高温性能优异。 By studying the low-temperature charging performance of conventional layered artificial graphite(XFH)and secondary-granulated graphite(SS)materials,the related characterization methods for lithium deposition at low temperature for lithium batteries are proposed.Studies show that compared with the conventional negative electrode materials,the secondary granulated graphite is more conducive to the improvement of the low-temperature charging performance of the Lithium battery.The negative electrode material of SS has a discharge capacity retention rate up to 100.12%at-10℃and the charge and discharge rate of 0.1C/0.5C for 50 cycles.The capacity recovery rate is 100%after low-temperature cycles.Even more,the high temperature performance is excellent.The negative electrode of secondary granulated graphite battery has the capacity retention rate of 90.62%at 55℃and the rate of 1C for 788 cycles.Shelve after 7 days at the high temperature of 55℃,the charge retention rate is 96.14%,and the capacity recovery rate is 98.04%.
作者 顾月茹 苏长虎 戚凤晓 别深超 张振朋 白方磊 GU Yueru;SU Changhu;QI Fengxiao;BIE Shenchao;ZHANG Zhenpeng;BAI Fanglei(Do-Fluoride Chemical Co.Ltd,Jiaozuo 454006,China)
出处 《河南化工》 CAS 2019年第1期18-22,共5页 Henan Chemical Industry
关键词 负极 低温充电 二次造粒 anode low temperature charging secondary granulation
  • 相关文献

参考文献3

二级参考文献69

  • 1武山,庄全超.锂离子电池有机电解液材料研究进展[J].化学研究与应用,2005,17(4):433-438. 被引量:10
  • 2左晓希,李伟善,刘建生,许梦清.砜类添加剂在锂离子电池电解液中的应用[J].电池工业,2006,11(2):97-99. 被引量:12
  • 3许梦清,左晓希,周豪杰,李伟善,刘建生,袁中直.锂离子电池PC基电解液的电化学行为研究[J].电池工业,2006,11(3):185-189. 被引量:3
  • 4Zhang S S, Xu K, Jow T R. An improved electrolyte for the LiFePO4 cathode working in a wide temperature range [J]. Journal of Power Sources, 2006, 159(1): 702-707.
  • 5Etacheri V, Haik O, Goffer Y, et al. Effect of fluoroethy- lene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes[J]. Lang- muir, 2012, 28(1): 965-976.
  • 6Nakai H, Kubota T, Kita A, et al. Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes[J]. Joumal of The Electrochemical Soci- ety, 2011, 158(7): A798-A801.
  • 7Liao X Z, Ma Z F, Gong Q, et al. Low-temperature perfor- mance of LiFePO4/C cathode in a quaternary carbon- ate-based electrolyte[J]. Electrochemistry Communica- tions, 2008, 10(5): 691-694.
  • 8金明钢,赵新兵,沈垚,董全峰,林祖赓.低温锂离子电池研究进展[J].电源技术,2007,31(11):930-933. 被引量:10
  • 9RUI X H, J1N , FENG X Y, et al. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries[J]. J Power Sources, 2011, 196(4):2109-2114.
  • 10RATNAKUMAR B V, SMART M C, HUANG C K, et al. Lithium ion batteries for Mars exploration missions [J], Eletrochim Acta, 2000, 45(8-9): 1513-1517.

共引文献54

同被引文献24

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部