期刊文献+

基于FSI效应AP1000屏蔽厂房重力水箱的模态分析

Modal analysis of gravity water tank for AP1000 shielded building based on FSI effect
下载PDF
导出
摘要 为了研究AP1000屏蔽厂房PCS重力水箱中考虑水体与结构相互作用时水箱结构固有特性,基于液固耦合理论分析方法,首先针对重力水箱特殊的结构形式分别建立不同水位高度下的理论分析模型和FEM数值模型,对比分析不同方法同水位高度下PCS重力水箱中水的晃动频率的差异性,然后对不同水位高度下水箱中水体的晃动模态进行分析,最后对水箱耦合系统结构振动模态变化进行探究。研究结果得出:等效圆柱水箱和等效环形水箱计算得到的晃动频率相差不大,且FEM法得到的水的晃动频率比理论方法小;水晃动频率随着水位升高而增大,结构的振动频率则相反。 To study the inherent characteristics of the tank structure in the PCS gravity water tank of AP1000 shielded building,with the interaction between water and structure,theoretical analysis model and FEM numerical model at different water level heights are established based on the theoretical analysis method of fluid structure interaction.Comparing the difference of shaking frequency of water in PCS gravity water tank in the same water level with different methods,then the sloshing mode of water in the water tank under different water levels is analyzed.Finally,the vibration modal of tank coupled system are studied.The results show that the sloshing frequencies that calculated by the equivalent cylindrical tank and the equivalent annular tank are much the same,and the water sloshing frequency which obtained by the FEM method is smaller than the theoretical method;The water sloshing frequency increases with the increase of the water level,and the vibration frequency is opposite to such change.
作者 张程 田石柱 ZHANG Cheng;TIAN Shi-zhu(School of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,China;Jiangsu Key Laboratory of Structure Engineering,Suzhou 215011,China)
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2019年第1期33-40,共8页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金面上项目(51778394)
关键词 PCS重力水箱 液固耦合(FSI) 模态 晃动频率 PCS gravity water tank fluid structure interaction (FSI) modal sloshing frequency
  • 相关文献

参考文献5

二级参考文献35

  • 1叶奇蓁.把握核电可持续发展的几个重要问题[J].中国核电,2008,1(4):290-295. 被引量:8
  • 2臧峰刚.反应堆吊篮在空气和水中的模态分析[J].核动力工程,2000,(增刊):107-110.
  • 3[2]Fritz R J, The effect of liquids on the dynamic motions of immersed solids. Journal of Engineering for Industry [ J ]. 1972;94(1): 167-173.
  • 4Alan Pride. CRMP Reliability Centered Maintenance Overview[S]. 2005.
  • 5Mowbray J. RCM 11, Reliability Centered Maintenance [S]. 1997.
  • 6Smith A M. Reliability-Centered Maintenance[M]. McGraw-Hill, 1993.
  • 7叶奇蓁.解析我国核能利用与安全状况[N]国家电网报,2011.
  • 8ZHAO C, CHEN J. Dynamic characteristics of AP1000 shield building for various water levels and air intakes considering fluid-structure interaction [J]. Progress in Nuclear Energy, 2014,70:176 -187.
  • 9ZHAO C, CHEN J, XU Q. Dynamic analysis of AP1000 shield building for various elevations and shapes of air intakes considering FSI effects sub- jected to seismic loading[-J]. Progress in Nuclear Energy, 2014, 74:44 -52.
  • 10Nicolici S, Bilegan R M. Fluid structure interaction modeling of liquid sloshing phenomena in flexible tanks[ J ]. Nuclear Engineering and Design, 2013, 258:51 -56.

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部