期刊文献+

Development of a microcomposite with single-walled carbon nanotubes and Nd_2O_3 for determination of paracetamol in pharmaceutical dosage by adsorptive voltammetry 被引量:1

Development of a microcomposite with single-walled carbon nanotubes and Nd_2O_3 for determination of paracetamol in pharmaceutical dosage by adsorptive voltammetry
下载PDF
导出
摘要 This study presents for the first time a new composite of carbon paste(CP), single-walled carbon nanotubes(SWCNTs) and Nd2 O3(NdOX). This versatile composite(NdOX-SWCNT/CPE) was applied to the oxidation of paracetamol(PCM). The newly formed surface was characterized by scanning electron microscopy(SEM), electrochemical impedance spectroscopy(EIS) and cyclic voltammetry(CV). The results showed greater conductivity and a higher surface area for the composite than those of the carbon paste alone. Moreover, the anodic peak currents for PCM increased from 1.6 to 3.6 m A with CPE and NdOXSWCNT/CPE, indicating an increase of nearly 51.0% for the anodic peak current. On the other hand, the anodic peak potentials shifted from 0.67 to 0.57 V. The detection limits were 0.05 mmol/L with NdOXSWCNT/CPE and 0.50 mmol/L with SWCNT/CPE. The relative standard deviations(RSDs) were 1.5%(n=7). The accuracy and interference of the methods were evaluated with a urine chemistry control spiked with known quantities of PCM, uric acid, dopamine, ascorbic acid, caffeine, acetylsalicylic acid,tartrazine, sunset yellow, allure red, rutin, morin and metal ions. Finally, the novelty and usefulness of the composite were evaluated to quantify PCM in pharmaceutical dosage forms such as tablets, powders and syrups for children. This study presents for the first time a new composite of carbon paste(CP), single-walled carbon nanotubes(SWCNTs) and Nd2 O3(NdOX). This versatile composite(NdOX-SWCNT/CPE) was applied to the oxidation of paracetamol(PCM). The newly formed surface was characterized by scanning electron microscopy(SEM), electrochemical impedance spectroscopy(EIS) and cyclic voltammetry(CV). The results showed greater conductivity and a higher surface area for the composite than those of the carbon paste alone. Moreover, the anodic peak currents for PCM increased from 1.6 to 3.6 m A with CPE and NdOXSWCNT/CPE, indicating an increase of nearly 51.0% for the anodic peak current. On the other hand, the anodic peak potentials shifted from 0.67 to 0.57 V. The detection limits were 0.05 mmol/L with NdOXSWCNT/CPE and 0.50 mmol/L with SWCNT/CPE. The relative standard deviations(RSDs) were 1.5%(n=7). The accuracy and interference of the methods were evaluated with a urine chemistry control spiked with known quantities of PCM, uric acid, dopamine, ascorbic acid, caffeine, acetylsalicylic acid,tartrazine, sunset yellow, allure red, rutin, morin and metal ions. Finally, the novelty and usefulness of the composite were evaluated to quantify PCM in pharmaceutical dosage forms such as tablets, powders and syrups for children.
出处 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2019年第1期62-69,共8页 药物分析学报(英文版)
基金 the Universidad de los Andes for financial support from the Interfaculty project and the Faculty of Sciences the financial support of the Universidad de Ibagué (project 18-541-INT) COLCIENCIAS (project 130774559056)
关键词 PARACETAMOL Neodymium(Ⅲ) Oxide SINGLE-WALLED carbon nanotubes PHARMACEUTICAL DOSAGE Paracetamol Neodymium(Ⅲ) Oxide Single-walled carbon nanotubes Pharmaceutical dosage
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部