期刊文献+

基于聚类与句子加权的欺骗性评论检测 被引量:1

Deceptive Comment Detection Based on Clustering and Sentence Weighting
下载PDF
导出
摘要 消费者在购物前往往会参考产品评论,欺骗性评论容易误导顾客使其作出错误决定。现有检测欺骗性垃圾评论的方法大多采用机器学习方法,难以学习评论的潜在语义。因此提出一个基于聚类与注意力机制的神经网络模型学习评论语义表示。该模型使用基于密度峰值的快速搜索聚类算法找出词向量空间语义群,通过KL-divergence计算权重,然后综合句子中单词与单词所属的语义群得到句子表示。实验结果表明,该模型准确率达82.2%,超过现有基准,在欺骗性垃圾评论识别中具有一定使用价值。 Consumers prefer to read product reviews before shopping.Deceptive comments can easily mislead customers to make wrong decisions.Existing methods for detecting fraudulent spam comments mostly use machine learning,but it is difficult to learn the underly ing semantics of comments.This paper proposes a neural network model based on clustering and attention mechanism to learn the se mantic representation of comments.Specifically,this paper first makes the fast search clustering algorithm based on density peaks to find the semantic group in the word vector space,and calculates the weight by KL-divergence.Then it synthesizes the words in the sen tence and the semantic group to which the word belongs to get the sentence representation.The experimental results show that the accu racy of the proposed model reaches 82.2%,which exceeds the current benchmark.Therefore,it has certain value in the identification of fraudulent spam comments.
作者 张建鑫 ZHANG Jian-xin(College of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao 266000,China)
出处 《软件导刊》 2019年第2期34-37,共4页 Software Guide
关键词 欺骗性评论 聚类 句子加权 神经网络 deceptive review detection clustering sentence weighting neural network
  • 相关文献

参考文献8

二级参考文献122

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:122
  • 3高琰,谷士文,唐琎,蔡自兴.机器学习中谱聚类方法的研究[J].计算机科学,2007,34(2):201-203. 被引量:31
  • 4刘群 李素建.基于《知网》的词汇语义相似度的计算.中文计算语言学,2002,17(2):59-76.
  • 5Tumey P. Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews [C] //Proc of the 40th Annual Meeting of the Association for Computational Linguistics. New,York: ACM, 2002: 417- 424.
  • 6Pang B, Lee L, Shivakumar V. Thumbs up? sentiment classification using machine learning techniques [C]//Proc of the 2002 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: ACL, 2002:79-86.
  • 7Wiebe J M. Learning subjective adjectives from corpora [C] //Proc of the 17th National Conf on Artificial Intelligence. Menlo Park: AAAI Press, 2000:735-740.
  • 8Hatzivassiloglou V, McKeown K R. Predicting the semantic orientation of adjectives [C]//Proc of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conf of the European Chapter of the Association for Computational Linguistics. Stroudsburg. PA, USA: ACL, 1997:174-181.
  • 9Turney P, Littman M. Measuring praise and criticism: inference of semantic orientation from association [J]. ACM Trans on Information Systems, 2003, 21(4): 315-346.
  • 10Pang B, Lee L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts [C] //Proc of the 42nd Annual Meeting on Association for Computational Linguistics. Srroudsburg, PA, USA: ACL. 2004:271-278.

共引文献695

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部