期刊文献+

基于改进协同过滤算法的个性化美食推荐APP开发 被引量:4

Development of Personalized Food Recommendation APP on Improved Collaborative Filtering Algorithm
下载PDF
导出
摘要 为了改善基于个人喜好或营养成分等单一特征的传统协同过滤算法推荐效果不好、缺乏实时性及使用不方便等问题,将中医体质、地方口味、营养成分等多种特征相结合,利用基于Spark Streaming的协同过滤算法,设计一款基于Android平台的智能饮食推荐APP。实验结果表明,改进协同过滤算法能够大幅改善推荐效果,该APP不仅可为用户推荐符合身体健康需要,且合乎口味的饮食,而且能够较好地满足用户对实时性与便捷性的要求。 In order to improve the recommendation effect of traditional collaborative filtering algorithms based on individual preferences or nutritional components,lack of real-time performance and inconvenience in use,a collaborative filtering algorithm based on Spark-Streaming platform is used to realize online real-time recommendation according to the characteristics of traditional diet,traditional Chinese medicine constitution and nutritional components.On this basis,a smart diet recommendation APP based on Android platform is designed.Practice has proved that the improved algorithm based on Android can greatly improve the recommendation efficiency and provide convenience.This APP can not only recommend a healthy and tasty diet for users,but also meet the real-time and convenient requirements of users.
作者 周显春 邓雨 吴世雄 杨宇鑫 王晗 ZHOU Xian-chun;DENG Yu;WU Shi-xiong;YANG Yu-xin;WANG Han(School of Information and Intelligence Engineering,Sanya University,Sanya 572022,China)
出处 《软件导刊》 2019年第2期88-90,95,共4页 Software Guide
基金 国家级大学生创新训练计划项目(201713892035)
关键词 协同过滤算法 SparkStreaming 特征融合 智能推荐 饮食推荐 collaborative filtering algorithm Spark Streaming feature fusion Intelligent recommendation food recommendation
  • 相关文献

参考文献9

二级参考文献46

  • 1蒋盛益,李庆华.无指导的入侵检测方法[J].计算机工程,2005,31(9):31-33. 被引量:4
  • 2王琦.9种基本中医体质类型的分类及其诊断表述依据[J].北京中医药大学学报,2005,28(4):1-8. 被引量:2015
  • 3朱燕波,王琦,薛禾生,折笠秀树.中医体质量表性能的初步评价[J].中国临床康复,2006,10(3):15-17. 被引量:246
  • 4Lt Lin-yuan, Medo M, Yeung C H, et al.. Recommender systems[J]. Physics Reports, 2012, 1(3): 159-172.
  • 5Konstan J A and Riedl J T. Recommender systems: from algorithms to user experience[J]. User Modeling and User- Adapted Interaction, 2012, 22(1): 101-123.
  • 6Cacheda F, Carneiro V, Fernandez D, et al.. Comparison of collaborative filtering algorithms: limitations of current techniques and proposals for scalable, high-performance recommender systems[J]. ACM Transactions on the Web, 2011, 5(2): 1-33.
  • 7Ricci F, Rokach L, Shpira B, et al.. Recommender Systems Handbook: A Complete Guide for Scientists and Practioners [M]. New York, 2011.
  • 8Funk S. Netflix update: try this at home[OL], http:// sifter.org/-simon/journal/20061211.html. 2012.3.
  • 9Koren Y, Bell R, and Volinsky C. Matrix factorization techniques for recommender systems[J]. IEEE Computer, 2009, 42(1): 30-37.
  • 10Paterek A. Improving regularized singular value decomposition for collaborative filtering[C]. Preceedings of KDD Cup and Workshop, CMifornia, 2007: 39-42.

共引文献47

同被引文献31

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部