期刊文献+

生物固氮体系人工设计的研究进展 被引量:7

Advancement in artificial design of biological nitrogen fixation system
下载PDF
导出
摘要 非豆科作物根际固氮能够给玉米和水稻等粮食作物提供生长所需的氮素,部分替代化学氮肥,在农业生产中应用意义重大。人工设计固氮和抗逆调控元件与功能模块,构建作物根际人工高效固氮体系并进行系统优化,是当前合成生物技术在农业中应用的一个重要研究方向。重点针对非豆科作物根际固氮体系的设计思路、研发动态和应用前景作简要综述。 Nitrogen fixation associated with the roots of non-legume crops is of considerable agronomic interest and has a great potential as an alternative to help meeting the reactive nitrogen demand in a sustainable way.Design and optimization of synthetic modules for non-legume nitrogen fixation and related stress resistance is an important goal for applications of synthetic biology in agriculture.This paper presents an overview with focus on artificial design,R&D trends and application prospects of biological nitrogen fixation system in the rhizosphere of non-legume crops.
作者 燕永亮 王忆平 林敏 YAN Yongliang;WANG Yiping;LIN Min(Biotechnology Research Institute,CAAS,Beijing 100081,China;Peking University,Beijing 100871,China)
出处 《生物产业技术》 2019年第1期34-40,共7页 Biotechnology & Business
基金 973"课题(2010CB126504) 国家自然科学基金项目(31770067 31470174 31170081)
关键词 生物固氮 功能模块 底盘 人工设计 biological nitrogen fixation functional module chassis artificial design
  • 相关文献

参考文献1

二级参考文献40

  • 1Burke DH, Hearst JE, Sidow A (1993). Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc. Natl. Acad. Sci. USA 90, 7134-7138.
  • 2Brocker M J, Virus S, Ganskow S, Heathcote P, Heinz DW, Schubert WD et al. (2008). ATP-driven reduction by dark-operative protochlorophyllide oxidoreductase from Chlorobium tepidum mechanistically resembles nitrogenase catalysis. J. Biol. Chem. 283, 10559-10567.
  • 3Cheng Q, Day A, Dowson-Day M, Shen GF, Dixon R (2005a). The Klebsiella pneumoniae nitrogenase Fe protein gene (nifH) functionally substitute for the chlL gene in Chlamydomonas reinhardtii. Biochem. Biophys. Res. Commun. 329, 966-975.
  • 4Cheng Q, Yang J, Day A, Dowson-Day M, Dixon R (2005b). Evolutionary implication of nitrogenase-like genes in plant kingdom and prospects for nil gene transfer in model eukaryotes. In: Wang YP et al., eds. Biological Nitrogen Fixation, Sustainable Agriculture and the Environment. pp. 387-389.
  • 5Dahlin C, Aronsson H, Wilks HM, Lebedev N, Sundqvist C, Timko MP (1999). The role of protein surface charge in catalytic activity and chloroplast membrane association of the pea NADPH:protochlorophyllide oxidoreductase (POR) as revealed by alanine scanning mutagenesis. Plant Mol. Biol. 39, 309-323.
  • 6Dixon RA, Postgate JR (1972). Genetic transfer of nitrogen fixation from Klebsiella pneumoniae to Escherichia coli. Nature 237, 102- 103.
  • 7Dos Santos PC, Dean DR, Hu Y, Ribbe MW (2004). Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem. Rev. 104, 1159-1173.
  • 8Dowson-Day M J, Ashurst JL, Watts J, Dixon RA, Merrick MJ (1991). Studies of the potential for expression of nitrogenase Fe-protein in cells of higher plants. In: Polsineli M, Materassi R, Vincenzini M, eds. Nitrogen Fixation: Proceedings of the 5th International Symposium on Nitrogen Fixation with Non-Legumes. Kluwer, Dordrecht. pp. 659- 669.
  • 9Ead CD, Ausubel FM (1982). The genetic engineering of nitrogen fixation. Technol. Rev. 85, 65-71.
  • 10Einsle O, Tezcan FA, Andrade SL, Schmid B, Yoshida M, Howard JB et al. (2002). Nitrogenase MoFe-protein at 1.16 A resolution: a central ligand in the FeMo-cofactor. Science 297, 1696- 1700.

共引文献6

同被引文献71

引证文献7

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部