期刊文献+

一种双工业机器人协同加工的轨迹规划方法 被引量:4

A Trajectory Planning Method for Cooperative Machining of Dual Industrial Robots
下载PDF
导出
摘要 通过建立空间虚拟工件坐标系,分别得到两机器人到工件坐标系的转换矩阵,从而使两机器人基座标系之间建立联系,标定出两机器人基座标系之间的相对位姿关系。在此基础上,提出一种双机器人离线轨迹生成方法,对三通类型工件生成离线协同程序,并使焊枪在机器人变位过程中始终处于最佳焊接角度。该算法在华数焊接机器人JH-605与JR-605上进行了实验,验证结果表明了算法的可行性与有效性。 By the establishment of the spatial virtual workpiece coordinate system,the transformation matrix of the doublerobot to the workpiece coordinate system is obtained,so as to establish the relationship between the double-robot base coordinate system,ultimately the relative pose relationship is calibrated between the two robot base coordinate system.On this basis,a dual robot offline trajectory generation method is proposed,and an offline collaborative program is generated for the t-branch pipe,and the welding gun is always in the best welding angle during the robot displacement process.The algorithm is tested on the JH-605 and JR-605 of the HuaShu welding robots,then the result shows that the algorithm is feasible and effective.
出处 《工业控制计算机》 2019年第2期62-64,共3页 Industrial Control Computer
关键词 双机器人协同 协同控制 焊接机器人 轨迹计算 double-robot cooperation coordination control welding robot trajectory calculation
  • 相关文献

参考文献3

二级参考文献23

  • 1唐新华,Paul Drews.机器人三维可视化离线编程和仿真系统[J].焊接学报,2005,26(2):64-68. 被引量:33
  • 2Kosuge K, Ishikawa J, Furuta K, et al. Control of single-master multi-slave manipulator system using VIM[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1990: 1172-1177.
  • 3Zhu W H. On adaptive synchronization control of coordinated multirobots with flexible/rigid constraints[J]. IEEE Transactions on Robotics, 2005, 21(3): 520-525.
  • 4Tavasoli A, Eghtesad M, Jafarian H. Two-time scale control and observer design for trajectory tracking of two cooperating robot manipulators moving a flexible beam[J]. Robotics and Autonomous Systems, 2009, 57(2): 212-221.
  • 5Cook G E, Andersen K, Zein-Sabattou S, et al. Multiple-robot programming for coordinated motion, end-effector calibration, and part localization[C]//Conference Record of the IEEE Industry Applications Society Annual Meeting. Piscataway, NJ, USA: IEEE, 1989: 1669-1674.
  • 6Agapakis J E, Katz J M, Pieper D L. Programming and control of multiple robotic devices in coordinated motion[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1990: 362-367.
  • 7Jouaneh M K, Wang Z, Dornfeld D A. Trajectory planning for coordinated motion of a robot and a positioning table. I. Path specification[J]. IEEE Transactions on Robotics and Automation, 1990, 6(6): 735-745.
  • 8Ahmad S, Luo S. Coordinated motion control of multi- ple robotic devices for welding and redundancy coordination through constrained optimization in Cartesian space[J]. IEEE Transactions on Robotics and Automation, 1989, 5(4): 409-417.
  • 9Pashkevich A E Dolgui A B, Semkin K I. Kinematic aspects of a robot-positioner system in an arc welding application[J]. Control Engineering Practice, 2003, 11(6): 633-647.
  • 10Gan Y H, Dai x z. Base frame calibration for coordinated industrial robots[J]. Robotics and Autonomous Systems, 2011, 59(7/8): 563-570.

共引文献35

同被引文献15

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部