期刊文献+

融合编码解码和线性回归的短期风速预测 被引量:1

下载PDF
导出
摘要 风电场风速的准确预测对电力系统的稳定运行至关重要。提出了一种融合编码解码和线性回归的短期风速预测模型。为了减小前一时刻的风速数值与预测值的强相关性,采用多分类建模方法构建编码解码结构的多步风速预测模型。编码解码模型的风速预测输出值与线性回归风速预测值进行加权,获得最终的风速预测结果。在近五年内的风速数据上进行实验的验证与测试。结果表明,相比较已有的编码解码模型、线性模型、神经网络模型等四种风速预测方法,提出的模型在短期风速预测方面,具有更优的预测性能。 A short-term wind speed prediction model is proposed which combines an encode-decoder model and a linear regression model.In order to reduce the strong correlation between the previous wind speed and the predicted wind speed,an encoder-decoder method of the multi-class prediction is applied to construct a multi-step wind speed prediction model in this paper.To obtain the final predicted wind speed,the wind speed prediction outputs of the encoder-decoder model and the linear regression model are weighted.Extensive experiments are conducted on five-year wind speed data.
机构地区 浙江理工大学
出处 《工业控制计算机》 2019年第2期70-71,共2页 Industrial Control Computer
关键词 编码解码模型 线性模型 风速预测 多分类预测 encoder-decoder model linear model wind speed prediction multi-class prediction
  • 相关文献

参考文献4

二级参考文献42

  • 1李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报,2004,24(6):100-105. 被引量:274
  • 2许磊,张凤鸣,程军.基于PSO神经网络的故障诊断方法研究[J].计算机工程与设计,2007,28(15):3640-3641. 被引量:13
  • 3Daisuke Tsujinishi, Shigeo Abe. Fuzzy least squares support vector machines for multiclass problems[J].Neural Networks, 2003, 16: 785-792.
  • 4Shuhaida Ismail, Ani Shabri, Ruhaidah Samsudin. A hybrid model of self-organizing maps (SOM) and least square support vector machine (LSSVM) for time-series forecasting[J]. Expert Systems with Applications, 2011, 38: 10574-10578.
  • 5WU Xiao-juan, HUANG Qi, ZHU Xin-jian. Thermal modeling of a solid oxide fuel cell and micro gas turbine hybrid power system based on modified LS-SVM[J]. International Journal of Hydrogen Energy, 2010, 36:885-892.
  • 6Alexiadis M, Dokopoulos P, Sahsamanoglou H et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998, 63(1): 61-68.
  • 7Bossanyi E A. Short-term wind prediction using Kalman filters[J]. WindEngineering, 1985, 9(1): 1-8.
  • 8Kamal L, Jafri Y Z. Tume series models to simulate and forecast hourly averaged wind speed in Wuetta, Pakistan[J]. Solar Energy, 1997,61(1): 23-32.
  • 9Kariniotekis G, Stavrakakis G, Nogaret E. Wind power forecasting using advanced neural network models[J]. IEEE Trans Energy Conversion, 1996, 11(4): 762-767.
  • 10楼顺天 施阳.基于MATLAB的系统分析与设计--神经网络[M].西安:西安电子科技大学出版社,2000..

共引文献684

同被引文献13

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部