摘要
由于未剔除环境因素和随机误差的影响,运用传统数据包络分析(DEA)和随机前沿分析(SFA)对高技术产业创新效率进行研究,容易引起评价结果误差。采用二者相结合的三阶段DEA模型对高技术产业创新效率及其影响因素进行测度与分析,能够保证评价结果的有效性。研究结果显示:规模效率不足是限制我国高技术产业创新效率提升的关键因素;另外,市场开放度能够显著正向促进高技术产业创新效率提升,而政府资助、地区经济发展和地区竞争不利于创新效率提升。最后,对投入要素与技术效率进行聚类分析,将我国内地28个省市划分为4种创新类型,并提出提升高技术产业创新效率的政策建议。
Since the influence of environmental factors and random errors is not eliminated,the use of traditional data envelopment analysis(DEA)and stochastic frontier analysis(SFA)to study the innovation efficiency of high-tech industries is likely to cause errors in evaluation results.The three-stage DEA model combined with the two measures and analyzes the innovation efficiency of high-tech industry and its influencing factors,which can ensure the effectiveness of the evaluation results.The research results show that the lack of scale efficiency is the key factor limiting the improvement of China's high-tech industry innovation efficiency.In addition,the openness of the market can significantly promote the innovation efficiency of high-tech industries,while the government subsidies,regional economic development and regional competition are not conducive to the improvement of innovation efficiency.Finally,through cluster analysis of input factors and technical efficiency,28 provinces and cities in China are divided into four types of innovation types,and policy recommendations for improving the innovation efficiency of high-tech industries are proposed.
作者
李婉红
刘芳
Li Wanhong;Liu Fang(School of Economics and Management,Harbin Engineering University,Harbin 150001,China)
出处
《科技进步与对策》
CSSCI
北大核心
2019年第4期75-81,共7页
Science & Technology Progress and Policy
基金
国家社会科学基金项目(17BGL204)
关键词
环境因素
高技术产业
创新效率
三阶段DEA模型
聚类分析
Envirnmental Factors
High-Tech Industry
Innovation Efficiency
Three-Phase DEA Model
Cluster Analysis