期刊文献+

界面自组装法制备高性能氧化石墨烯膜 被引量:2

Praparation of high performance GO membrane by interface self-assembly
下载PDF
导出
摘要 为制备可靠、精确的分子筛氧化石墨烯(GO)膜,克服基于厚度调控的抽滤自组装GO膜分离性能提升和通量减小之间的矛盾关系,采用界面自组装法,制备了具有更加紧密层间结构的GO膜,并对其性能进行了表征。实验结果表明:与抽滤自组装法制备GO膜相比,界面自组装法可以实现更加紧密的层间结构;在化学环境相似的条件下,界面自组装膜的层间距可达0.75 nm,较抽滤自组装膜减小了0.10 nm左右;成膜机理和速率是GO膜层间结构的主要影响因素。将该膜用于金属离子水溶液的截留实验,结果表明:界面自组装GO膜对Mg^(2+)的截留率可达70%左右,是抽滤自组装膜的1.3倍。 To prepare reliable and accurate graphene oxide(GO)membrane for molecular sieving,the interface self-assembly method is adopted to prepare GO membranes with more compact interlayer structure.This method can solve the problem that the contradictory relationship between the separation performance and flux caused by thickness control when tuning the performance of GO membrane.The experimental results showed that the interface self-assembly method can achieve closer interlayer structure compared with filtration self-assembly.Under the condition of similar chemical environment,the interlayer spacing can reach about 0.75 nm,which is reduced 0.10 nm than that of filtration self-assembly GO membrane.The formation mechanism and rate are the main factors influencing the interlayer structure.The desalting experiment of the membrane for metallic cations/water solution showed that the rejection rate of the interface self-assembled GO membrane for Mg^2+was about 70%,which was 1.3 times of the self-assembly membrane.
作者 李振环 张永志 LI Zhen-huan;ZHANG Yong-zhi(chool of Material Science and Engineering,Tianjin Polytechnic University,Tianjin 300387,China;State Key Laboratory of Separation Membranes and Membrane Processes,Tianjin Polytechnic University,Tianjin 300387,China)
出处 《天津工业大学学报》 CAS 北大核心 2019年第1期7-11,共5页 Journal of Tiangong University
基金 国家自然科学基金资助项目(21676202 21376177)
关键词 氧化石墨烯膜 界面自组装 紧密层间结构 脱盐 graphene oxide membrane interface self-assembly compact interlayer structure desalination
  • 相关文献

参考文献1

二级参考文献14

  • 1Geim A K.Graphene:status and prospects[J].Science,2009,324:1530-1534.
  • 2Lotya M,Hemandez Y,King P J,et al.Liquid phase production of graphene by exfoliation of graphite in surfactant/water so-lutions[J].J Am Chem Soc,2009,131:3611-3620.
  • 3Lotya M,King P J,Khan U,et al.High-concentration,surfacrant-stabilized graphene dispersions[J].ACS Nano,2010,4:3155-3162.
  • 4Hernandez Y,Nicolosi V,Lotya M,et al.High-yield production of graphene by liquid-phase exfoliation of graphite[J].Nat Nanotechnol,2008,3:563-568.
  • 5Hamilton C E,Lomeda J R,Sun Z Z,et al.High-yield organic dispersions of unfunctionalized graphene[J].Nano Leu,2009,9:3460-3462.
  • 6Khan U,O'Neill A,Lotya M,et al.High-concentration solvent exfoliation of graphene[J].Small,2010,6(7):864-871.
  • 7Behabm N,Lomeda J R,Green M J,et al.Spontaneous highconcentration dispersions and liquid crystals of graphene[J].Nat Nanotechnol,2010,5:406-411.
  • 8Li D,Muller M B,Gilje S,et al.Processable aqueous dispersions of graphene nanosheets[J].Nat Nanotechnol,2008,3:101-105.
  • 9Chen C M,Yang Q H,Yang Y G.,et al.Self-assembled freestanding graphite oxide membrane[J].Adv Mater,2009,21:3007-3011.
  • 10LU W,XIA Z,WU S,et al.Conductive graphene-based macroscopic membrane self-assembled at liquid-air interface[J].J Mater Chem,2010,DOI:10.1039/COJM02852E.

共引文献26

同被引文献30

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部