期刊文献+

基于卡尔曼滤波的四轴飞行器成像、惯性和高度组合导航 被引量:9

Imaging,Inertial and Altitude Integrated Navigation for Quadrotor Based on Calman Filter
下载PDF
导出
摘要 为了提高四轴飞行器在非结构化、室内和GPS失效环境下的导航精度,本文提出一种用于四轴飞行器的成像、惯性和高度组合导航。首先对四轴飞行器搭载的摄像机进行了标定,获取了摄像机的内外参数。其次设计了着陆标志为标准参照物,以及着陆标志识别方案。再利用卡尔曼滤波器融合视觉、惯性测量系统和超声波测距仪的数据,通过相似三角形定理估计飞行器的相对高度,利用视觉测程法估计飞行器位置和位移速度。最后验证组合导航的有效性,用成像、惯性与高度组合导航实验平台依次进行了相对高度估计实验、平移速度和相对位置估计实验,实验测试表明:在高度估计实验中,组合导航能够很好的描述四轴飞行器的飞行高度估计;在平移速度估计实验中,卡尔曼滤波器估计的速度估计值很平滑;相对位置估计实验中,四轴飞行器的x方向位置保持在原点附近,y方向位置保持在-1.0 m附近,高度位置的最大误差在0.3 m之内。 In order to improve the navigation accuracy of quadrotor in unstructured,indoor and GPS failure environments,this paper proposes an imaging,inertial and altitude integrated navigation for quadrotor.Firstly,the camera mounted on the quadrotor is calibrated,and the internal and external parameters of the camera are obtained.Secondly,we use the landing signs as standard reference objects and present a landing signs recognition scheme.Then,the Calman filter is used to fuse the data of the vision,inertial measurement system and ultrasonic range finder.And the relative height of the aircraft is estimated by the similar triangle theorem.The visual odometry is used to estimate the position and translation speed of the quadrotor.Finally,the effectiveness of the integrated navigation is verified.The experiment of the relative height estimation experiment,the translation speed and the relative position estimation are carried out successively with the imaging,inertial and altitude integrated navigation experimental platform.The experimental results show that combination navigation can accurately estimate the altitude of quadrotor in the relative height estimation experiment;In the translation velocity estimation experiment,the curve of velocity estimation by the Calman filter is smooth;In the relative position estimation experiment,the position of the X direction of the quadrotor is kept near the origin,the Y direction is kept near-1.0 m,and the maximum error of the altitude is within 0.3 m.
作者 邹强 付超 莫申童 ZOU Qiang;FU Chao;MO Shentong(School of Microelectronics,Tianjin University,Tianjin 300072,China;Tianjin International Joint Research Center for Internet of Things,Tianjin 300072,China;Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology,Tianjin 300072,China;Qingdo Insuitute Ocean Engineering of Tianjin University,Qingdao Shandong 300072,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2019年第1期1-7,共7页 Chinese Journal of Sensors and Actuators
基金 国家科技支撑计划项目(30249) 青岛科技支撑专项项目(17-3-3-90-nsh) 住建部科学技术计划项目(2017-K8-028) 天津建设系统软课题研究项目(2018E6-0009)
关键词 四轴飞行器 组合导航 视觉识别 卡尔曼滤波 quadrotor integrated navigation visual recognition kalman filtering
  • 相关文献

参考文献6

二级参考文献41

  • 1张广军,周富强.基于双圆特征的无人机着陆位置姿态视觉测量方法[J].航空学报,2005,26(3):344-348. 被引量:41
  • 2Zheng-you Zhang.A flexible New Technique for CameraCalibration[J].IEEE Transactions on Pattern Analysis andMachine Intellgence,2000,22(11):1330-1334.
  • 3HOFFMANN E GODDEMEIER N, BERTRAM T. Attitude estima- tion and control of a quadrocopter [C]//The 2010 IEEE/RSJ Interna- tional Conference on Intelligent Robots and Systems. Taipei: IEEE, 2010: 1072- 1077.
  • 4KENDOUL F, NONAMI K. A visual navigation system for au- tonomous flight of micro air vehicles [C]//The 2009 IEEE/RSJ Inter- national Conference on Intelligent Robots and Systems. Louis, USA: IEEE, 2009:3888 - 3893.
  • 5BOUCHOUCHA M, TADJINE M, TAYEBI A, et al. Backstepping based nonlinear PI for attitude stabilisafion of a quadrotor: from the- ory to experiment [C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France: IEEE, 2008:4183.
  • 6Crossbow. Measurement of a vehicle's dynamic motion combine angular rate sensors with accelerometers [OL]. http://www.moog- crossbow.com/Literature/Application_N of_Vehicle% 27 s _Dynaraic_Motions.pdf.
  • 7PETKOV P, SLAVOV T. Stochastic modeling of MEMS inertial sen- sors [J]. Bulgarian Academy of Sciences: Cybernetics and Informa- tion Technologies, 2010, 10(2): 31 - 40.
  • 8VAIBHAV S, RANA S C, KUBER M M. Online estimation of state space error model for MEMS IMU [J]. Journal of Modelling and Sim- ulation of Systems, 2010, 1(4): 219 - 225.
  • 9HUAM1NG Q, QUANXI X, BO J, et al. On modeling of random drift of MEMS gyroscope and design of Kalman filter [C] //Proceedings of the 2009 IEEE International Conference on Mechatronic-" and Au- tomation. Changchun, China: IEEE, 2009.
  • 10ARNOLD M, MILNER X H R, WITTE H, et al. Adaptive AR modeling of nonstationary time series by means of Kalman filtering [J]. IEEE Transactions on Biomedical Engineering, 1998, 45(5): 553 - 562.

共引文献113

同被引文献91

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部