摘要
高分子聚合物材料溶液加工的基础是找到能够溶解聚合物的溶剂,而低共熔溶剂(DES)是一种新型的绿色溶剂。研究发现,氯化锌/1,2-丙二醇的DES可以溶解聚乙二醇(PEG),研究不同体系聚乙二醇/氯化锌/1,2-丙二醇溶液在不同温度下的密度、表观粘度、电导率、表面张力。以分子热运动、氢键、高分子链"末端"效应和链缠结分析和解释以上数据随温度、聚乙二醇分子量变化规律,并且使用Doolittle型方程对密度和表观粘度进行数据关联。研究表明,聚乙二醇/氯化锌/1,2-丙二醇溶液密度和粘度随温度升高而降低,而电导率却增高;密度和电导率随着聚乙二醇浓度增加而降低,但表面张力和粘度增加;粘度、电导率和表面张力随聚乙二醇分子量增加而密度下降,这可能是因为链"末端"效应和链缠结以及氢键变化导致。密堆体积在0.72~0.76 cm^3/g,密堆体积随聚乙二醇浓度和分子量增加而升高。
The basis of polymer polymer material processing was to find a solvent that can dissolve this polymer,deep eutectic solvent(DES)was a new type of green solvent.It was found that DES of ZnCl2/1,2-propanediol can dissolve polyethylene glycol(PEG),investigated the density,viscosity,conductivity,and surface tension of different systems of PEG/ZnCl2/1,2-propanediol at different temperatures.The molecular thermal motion,hydrogen bonding,polymer chain“end”effect and chain entanglement were used to analyze and explain the above data with temperature and PEG molecular weight,and the Doolittle equation was used to correlate the density and apparent viscosity.Studies have shown that the density and viscosity of PEG/ZnCl2/1,2-propanediol solution decrease with increasing temperature and conductivity increases due to enhanced thermal motion of molecules and weakening of hydrogen bonds.Density and conductivity decrease with increasing PEG concentration,but surface tension and viscosity increase,viscosity,conductivity,and surface tension decrease with increasing molecular weight of PEG,this may be due to chain“end”effects and chain entanglement and hydrogen bond changes.The volume of the close-pack is 0.72~0.76 cm3/g,and the volume of the close-pack increases with the concentration and the molecular weight of PEG.
作者
刘训伟
韩骐聪
张智健
汪康
LIU Xun-wei;HAN Qi-cong;ZHANG Zhi-jian;WANG Kang(Department of Chemical Engineering and Technology,College of Chemistry and Chemical Engineering,Hefei University of Technology,Hefei 230009,China)
出处
《安徽化工》
CAS
2019年第1期44-47,51,共5页
Anhui Chemical Industry
关键词
低共熔溶剂
聚乙二醇
热力学
动力学
deep eutectic solvents
polyethylene glycol(PEG)
thermodynamic
dynamics