期刊文献+

采用波导技术的地下传感网通信信道建模 被引量:6

Communication channel modeling of underground sensing network using waveguide technology
下载PDF
导出
摘要 针对传统无线地下传感器网络中的磁感应通信系统所固有信道路径损耗较大,无法满足较远距离的通信需求的问题,构建了一种基于波导技术(Magnetic induction,MI)的磁感应通信系统信道模型。通过采用波导技术,即采用一列一定数量的磁耦合的元件,向收发线圈之间等距离引入一定数量的无源中继线圈,在每个谐振线圈中引入的匹配电容的容值都应控制在大于10 pF,同时设定继线圈之间的理想距离为0.7 m,采用电共振的方法,能够有效降低整个通信系统的信道路径损耗,同时也有效地拓展了磁感应通信信道带宽。仿真实验表明:MI波导通信系统在较低噪声功率环境下,当路径损耗小于100 dB时,路径损耗值将不会影响到信道误码率。 In light of the fact that the inherent channel loss of the magnetic induction communication system in the traditional wireless underground sensor network is greater and can not meet the long-distance communication requirement,a channel model of the magnetic induction communication system is constructed based on waveguide technology(Magnetic induction,MI).A certain number of magnetically-coupled elements are adopted,a required number of passive relay coins are introduced between the receiving and transmitting coins,and the value of matching capacitance introduced in each resonant coil should be more than 10 pF.The ideal distance between the relay coils is set at 0.7 m.Using the method of electrical resonance can not only effectively reduce the channel path loss of the entire communication system,but also effectively expand the magnetic induction communication channel bandwidth.The simulation results show that when the path loss value is below 100 dB,it will not have a effect on the channel BER.
作者 李波 郝杰 李开放 李浩 LI Bo;HAO Jie;LI Kai-fang;LI Hao(Deparment of Computer Engineering,Xi’ an Aeronautical University,Xi’an 710077,China;School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710072,China)
出处 《西安科技大学学报》 CAS 北大核心 2018年第6期1036-1040,共5页 Journal of Xi’an University of Science and Technology
基金 陕西省自然科学基金(2017JM6096) 2018西安市科技局科技创新引导项目(201805032YD10CG16(1))
关键词 地下传感器网络 磁感应 波导技术 电共振 信道模型 wireless underground sensor networks magnetic induction waveguide electric resonance channel model
  • 相关文献

参考文献2

二级参考文献31

  • 1杨维,冯锡生,程时昕,孙继平.新一代全矿井无线信息系统理论与关键技术[J].煤炭学报,2004,29(4):506-509. 被引量:86
  • 2AKYILDIZ I F, STUNTEBECK E P. Wireless under- ground sensor networks: research challenges [ J ]. Ad itoc Networks, 2006,4 ( 6 ) : 669-686.
  • 3AKYILDIZ 1 F, SUN Z, VURAN M C. Signal propaga- tion techniques for wireless underground communication networks [ J] . Physical Communication, 2009,2 ( 3 ) : 167-183.
  • 4SOJDEHEJ J J, WRATHALL P N, DINN D F. Magneto- inductive communications: Proceedings of MTS/IEEE Conference and Exhibition OCEANS, Hnnolulu, HI, USA, November 5-8, 2001 [ C ]. Escondido, CA: Hol- land Publications, c2001:513-519.
  • 5GULBAHAR Burhan, AKAN O B. A communication theo- retical modeling and analysis of underwater magneto-induc- tive wireless channels [ J]. IEEE Transactions on Wireless Communications, 2012,11 (9) : 3326-3334.
  • 6DOMINGO M C. Magnetic induction for underwater wire- less communication networks [ J]. IEEE Transactions on Antennas and Propagation, 2012,60 (6) : 2929-2939.
  • 7JACK Nathan, SHENAI Krishna. Magnetic induction 1C for wireless conmmnieation in RF-impenetrable media: IEEE Workshop on Microelectronics and Electron De- vices, Boise, ID, USA, April 20, 2007 [ C]. Piscat- away, NJ: IEEE, c2007:47-48.
  • 8SUN Zhi, AKYILDIZ I F. Magnetic induction communi- cations for wireless underground sensor networks [ J ]. IEEE Transactions on Antennas and Propagation, 2010, 58 ( 7 ) :2426-2435.
  • 9BANSAL R. Near-field magnetic communication [J]. IEEE Antennas and Propagation Magazine, 2004,46 (2) : 114-115.
  • 10FATIHA E H, MARJORIE Grzeskowiak, STEPHANE Pro- tat, et al. Magnetic in-body and on-body antennas operating at 40 MHz and near field magnetic induction link budget:proceedings of 6th European Conference on Antennas and Propagation, Prague, March 26-30, 2012 [ C ]. Piscataway, NJ: IEEE, c2012:1-5.

共引文献11

同被引文献63

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部