期刊文献+

Repositioning of dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 agonists as potential neuroprotective agents 被引量:4

Repositioning of dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 agonists as potential neuroprotective agents
下载PDF
导出
摘要 Repositioning of dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists is a breakthrough in the field of neural regeneration research increasing glucagon like peptide-1 bioavailability, hence its neuroprotective activities. In this article, the authors suggest not only crossing blood-brain barrier and neurodegenerative disease as off target for dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists, but also for ophthalmic preparations for diabetic retinopathy, which may be the latest breakthrough in the field if prepared and used in an appropriate nano-formulation to target the retinal nerves. The relation of neurodegenerative diseases' different mechanisms to the dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists should be further examined in preclinical and clinical settings. The repositioning of already marketed antidiabetic drugs for neurodegenerative diseases should save the high cost of the time-consuming normal drug development process. Drug repositioning is a hot topic as an alternative to molecular target based drug discovery or therapeutic switching. It is a relatively inexpensive pathway due to availability of previous pharmacological and safety data. The glucagon like peptide-1 produced in brain has been linked to enhanced learning and memory functions as a physiologic regulator in central nervous system by restoring insulin signaling. Intranasal administration of all marketed gliptins(or glucagon like peptide-1 receptor agonists) may show enhanced blood-brain barrier crossing and increased glucagon like peptide-1 levels in the brain after direct crossing of the drug for the olfactory region, targeting the cerebrospinal fluid. Further blood-brain barrier crossing tests may extend dipeptidyl peptidase-4 inhibitors' effects beyond the anti-hyperglycemic control to intranasal spray, intranasal powder, or drops targeting the blood-brain barrier and neurodegenerative diseases with the most suitable formula. Moreover, novel nano-formulation is encouraged either to obtain favorable pharmacokinetic parameters or to achieve promising blood-brain barrier penetration directly through the olfactory region. Many surfactants should be investigated either as a solubilizing agent for hydrophobic drugs or as penetration enhancers. Different formulae based on in vitro and in vivo characterizations, working on sister gliptins(or glucagon like peptide-1 receptor agonists), different routes of administration, pharmacokinetic studies, dose response relationship studies, monitoring of plasma/brain concentration ratio after single and multiple dose, and neurodegenerative disease animal models are required to prove the new method of use(utility) for dipeptidyl peptidase-4 inhibitors as potential neuroprotective agents. Furthermore, investigations of glucagon like peptide-1 receptor agonists' neuroprotective effects on animal models will be considered carefully because they crossed the blood-brain barrier in previous studies, enabling their direct action on the central nervous system. Combination therapy of dipeptidyl peptidase-4 inhibitors or glucagon like peptide-1 receptor agonists with already marketed drugs for neurodegenerative disease should be considered, especially regarding the novel intranasal route of administration. Repositioning of dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists is a breakthrough in the field of neural regeneration research increasing glucagon like peptide-1 bioavailability, hence its neuroprotective activities. In this article, the authors suggest not only crossing blood-brain barrier and neurodegenerative disease as off target for dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists, but also for ophthalmic preparations for diabetic retinopathy, which may be the latest breakthrough in the field if prepared and used in an appropriate nano-formulation to target the retinal nerves. The relation of neurodegenerative diseases' different mechanisms to the dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists should be further examined in preclinical and clinical settings. The repositioning of already marketed antidiabetic drugs for neurodegenerative diseases should save the high cost of the time-consuming normal drug development process. Drug repositioning is a hot topic as an alternative to molecular target based drug discovery or therapeutic switching. It is a relatively inexpensive pathway due to availability of previous pharmacological and safety data. The glucagon like peptide-1 produced in brain has been linked to enhanced learning and memory functions as a physiologic regulator in central nervous system by restoring insulin signaling. Intranasal administration of all marketed gliptins(or glucagon like peptide-1 receptor agonists) may show enhanced blood-brain barrier crossing and increased glucagon like peptide-1 levels in the brain after direct crossing of the drug for the olfactory region, targeting the cerebrospinal fluid. Further blood-brain barrier crossing tests may extend dipeptidyl peptidase-4 inhibitors' effects beyond the anti-hyperglycemic control to intranasal spray, intranasal powder, or drops targeting the blood-brain barrier and neurodegenerative diseases with the most suitable formula. Moreover, novel nano-formulation is encouraged either to obtain favorable pharmacokinetic parameters or to achieve promising blood-brain barrier penetration directly through the olfactory region. Many surfactants should be investigated either as a solubilizing agent for hydrophobic drugs or as penetration enhancers. Different formulae based on in vitro and in vivo characterizations, working on sister gliptins(or glucagon like peptide-1 receptor agonists), different routes of administration, pharmacokinetic studies, dose response relationship studies, monitoring of plasma/brain concentration ratio after single and multiple dose, and neurodegenerative disease animal models are required to prove the new method of use(utility) for dipeptidyl peptidase-4 inhibitors as potential neuroprotective agents. Furthermore, investigations of glucagon like peptide-1 receptor agonists' neuroprotective effects on animal models will be considered carefully because they crossed the blood-brain barrier in previous studies, enabling their direct action on the central nervous system. Combination therapy of dipeptidyl peptidase-4 inhibitors or glucagon like peptide-1 receptor agonists with already marketed drugs for neurodegenerative disease should be considered, especially regarding the novel intranasal route of administration.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第5期745-748,共4页 中国神经再生研究(英文版)
关键词 REPOSITIONING DPP-4 INHIBITORS GLP-1RA neural regeneration blood-brain barrier Parkinson’s DISEASE Alzheimer’s DISEASE diabetic retinopathy repositioning DPP-4 inhibitors GLP-1RA neural regeneration blood-brain barrier Parkinson's disease Alzheimer's disease diabetic retinopathy
  • 相关文献

参考文献1

二级参考文献12

  • 1Bassil F, Fernagut PO, Bezard E, Meissner WG (2014) Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 118:1-18.
  • 2Bedse G, Di Domenico F, Serviddio G, Cassano T (2015) Aberrant insulin signaling in Alzheimer's disease: current knowledge. Front Neurosci 9:204.
  • 3Darsalia V, Ortsater H, Olverling A, Darlof E, Wolbert P, Nystrom T, Klein T, Sjoholm A, Patrone C (2013) The DPP-4 inhibitor linagliptin counteracts stroke in the normal and diabetic mouse brain: a comparison with glimepiride. Diabetes 62:1289-1296.
  • 4De Felice FG, Lourenco MV, Ferreira ST (2014) How does brain insulin resistance develop in Alzheimer's disease? Alzheimers Dement 10:S26-32.
  • 5Heras-Sandoval D, Ferrera P, Arias C (2012) Amyloid-beta protein modulates insulin signaling in presynaptic terminals. Neurochem Rese 37:1879-1885.
  • 6Holscher C (2014) Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol 221 :T31-41.
  • 7Hoyer S, Muller D, Plaschke K (1994) Desensitization of brain insulin receptor. Effect on glucose/energy and related metabolism. J Neural Transm Supp144:259-268.
  • 8Kornelius E, Lin CL, Chang HH, Li HH, Huang WN, Yang YS, Lu YL, Peng CH, Huang CN (2015) DPP-4 inhibitor linagliptin attenuates abeta-induced cytotoxicity through activation of AMPK in neuronal cells. CNS Netlrosci Ther 21:549-557.
  • 9Kosaraju J, Madhunapantula SV, Chinni S, Khatwal RB, Dubala A, Muthureddy Nataraj SK, Basavan D (2014) Dipeptidyl peptidase-4 inhibition by Pterocarpus marsupium and Eugenia jambolana ameliorates streptozotocin induced Alzheimer's disease. Behav Brain Res 267:55-65.
  • 10Steen E, Terry BM, Rivera El, Cannon IL, Neely TR, Tavares R, Xu XI, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Mzheimer's disease--is this type 3 diabetes? J Alzheimers Dis 7:63-80.

共引文献1

同被引文献12

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部