期刊文献+

基于强化学习和共识融合的分布式协作频谱感知方法 被引量:5

Distributed cooperative spectrum sensing method based on reinforcement learning and consensus fusion
下载PDF
导出
摘要 在频谱感知中为了解决不同信誉用户网络节点之间的数据融合问题,提出了一种基于强化学习和共识融合的分布式协作频谱感知方法。该方法将每个感知用户认为是一个智能体(agent),agent通过强化学习算法从相邻节点选择合作用户进行共识融合,采用信誉值作为奖励,确保agent倾向于信誉高的节点进行融合,并同时降低恶意用户的信誉值,使其逐渐退出感知网络,最后采用一致性融合方法使整个网络达成共识,并与判决门限对比,完成协作频谱感知。仿真实验表明,该方法能够有效的识别恶意用户,并通过强化学习提高整个网络的感知性能,使协作频谱感知网络更具智能性和稳定性。 In order to solve the problem of data fusion between network nodes of users with different reputation in spectrum sensing, a distributed cooperative spectrum sensing method based on reinforcement learning and consensus fusion is proposed. This method regards each perceived user as an agent, and the agent uses the reinforcement learning algorithm to select a cooperative user from adjacent nodes for consensus fusion. The reputation value is used as reward to ensure that agent tends to merge with high reputation nodes. At the same time, the reputation value of malicious users is reduced, causing that they gradually drop out of the cognitive wireless network. Finally, the conformance fusion method is adopted to make the whole network reach consensus and compare with the decision threshold to complete the cooperative spectrum sensing. The simulation results show that this method can identify malicious users effectively, and enhance the perception performance of the whole cognitive wireless network through reinforcement learning. As a result the cooperative spectrum sensing network is more intelligent and stable.
作者 张孟伯 王伦文 冯彦卿 ZHANG Mengbo;WANG Lunwen;FENG Yanqing(Electronic Countermeasure Institute,National University of Defense Technology, Hefei 230037, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2019年第3期486-492,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61273302 61671454) 国防科技创新特区项目(17-H863-01-ZT-003-204-03)资助课题
关键词 认知无线电 频谱感知 强化学习 共识融合 cognitive radio (CR) spectrum sensing reinforcement learning consensus fusion
  • 相关文献

参考文献2

二级参考文献15

  • 1Axell E, Leus G, Larsson E G, et al: Spectrum sensing for cognitive radio: State-of-the-art and recent advances[J]. IEEE Signal Processing Magazine, 2012, 29(3): 101-116.
  • 2Yueek T and Arslan H. A survey of spectrum sensing algorithms for cognitive radio applications[J]. IEEE Communications Surveys & Tutorials, 2009, 11(1): 116-130.
  • 3Ghozzi M, Marx F, Dohler M, et al: Cyclostatilonaxilty- based test for detection of vacant frequency bands[C]. 1st IEEE International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Mykonos Island, 2006: 1-5.
  • 4Zhu Y, Liu J, Feng Z, et al: Sensing performance of efficient cyclostationary detector with multiple antennas in multipath fading and lognormal shadowing environments[J]. Journal of Communications and Networks, 2014, 16(2): 162-171.
  • 5Sutton P D, 0zgttl B, and Doyle L E. Cyclostationary signatures for LTE advanced and beyond[J]. Physical Communication, 2014, 2014(10): 179-189.
  • 6Srinu S and Sabat S L. Effective cooperative wideband sensing using energy detection under suspicious cognitive radio network[J]. Computers :z Electrical Engineering, 2013, 39(4): 1153-1163.
  • 7Sofotasios P C, Rebeiz E, Zhang L, et al: Energy detection based spectrum sensing over and extreme :ading channels[J]. IEEE Transactions on Vehicular Technology: 2013, 62(3): 1031-1040.
  • 8Gokceoglu A, Dikmese S, Valkama M, et al: Energy detection under IQ imbalance with single-and multi-channel direct-conversion receiver: uaMysis and mitigation[J]. :EEE Journal on Selected Areas in Communications, 2014, 32(3): 411-424.
  • 9Zeng Y and Liang Y C. Maximum-minimum eigenvalue detection for cognitive radio[C]. Proceedings. IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, 2007: 1-5.
  • 10Lira T J, Zhang R, Liang Y C, et al: GLRT-based spectrum sensing for cognitive radio[C]. IEEE Global Telecommunications Conference (GLOBECOM), New Orleans, LO, 2008: 1-5.

共引文献15

同被引文献45

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部