期刊文献+

石墨烯/碳纳米管的制备及其超级电容性能 被引量:3

Preparation of graphene/CNT and performance of supercapacitor
下载PDF
导出
摘要 首先采用改性Hummers法制备氧化石墨(GO),然后以乙二醇为溶剂、水合肼为还原剂,采用化学还原法并结合冷冻干燥,制备石墨烯/碳纳米管(Gr/CNT)复合材料。研究了CNT添加量对Gr的结构及超级电容性能的影响。结果表明,适量CNT的添加会使Gr变得更加蓬松,但过量CNT的加入又会起到反作用。随着CNT和GO的质量比从0增加到0.4∶1.0,Gr/CNT材料的比电容呈先增加后降低的趋势,在CNT和GO的质量比为0.3∶1.0时比电容达到最大值。Gr/CNT-0.3复合材料在0.1 A/g电流密度下的比电容为104.8 F/g,是Gr材料的1.5倍,并具有良好的稳定性。 Graphite oxide (GO) was prepared by using modified hummers method. And then graphene/carbon nanotube (Gr/CNT) composites were prepared via chemical reduction method combining freeze drying with ethylene glycol as solvent and hydrazine hydrate as reducing agent. The effects of CNT addition on the structure and supercapacitive property of Gr were studied. The results show that the appropriate addition of CNT can make the Gr fluffier and lead to improved supercapacitive property, but the excessive addition of CNT to Gr can result in performance degradation. As the CNT/GO mass ratio increases from 0 to 0.4∶1.0, the specific capacitance of Gr/CNT increases at the beginning and then decreases. The Gr/CNT composites exhibit maximal specific capacitance when CNT/GO mass ratio is 0.3∶1.0. The specific capacitance of Gr/CNT-0.3 at 0.1 A/g is 104.8 F/g, which is 1.5 times as high as that of Gr. In addition, Gr/CNT-0.3 composites has good stability.
作者 高海丽 肖克 梁会会 陈庆玲 李云棚 GAO Hai-li;XIAO Ke;LIANG Hui-hui;CHEN Qing-ling;LI Yun-peng(Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou Henan 450001, China)
出处 《电源技术》 CAS 北大核心 2019年第2期266-269,共4页 Chinese Journal of Power Sources
基金 国家自然科学基金(U1404201) 国家级大学生创新创业训练项目(201710462003)
关键词 超级电容器 碳纳米管 石墨烯 性能 supercapacitor carbon nanotube graphene performance
  • 相关文献

参考文献2

二级参考文献60

  • 1TOUP1N M, BROUSSE T, BELANGER D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor [J]. Chemistry of Materials, 2004, 16(16): 3184-3190.
  • 2AN K H, KIM W S, PARK Y S, et al. Supercapacitors using single- walled carbon nanotube electrodes [J]. Advanced Materials, 2001, 13(7): 497-500.
  • 3KAEMPGEN M, CHAN C K, MA J, et al. Printable thin film supercapacitors using single-walled carbon nanotubes [J]. Nano Letters, 2009, 9(5): 1872-1876.
  • 4HAO L, LI X, ZHI L. Carbonaceous electrode materials for supercapacitors [J]. Advanced Materials, 2013, 25(28): 3899-3904.
  • 5MARKOULIDIS F, LE1 C, LEKAKOU C, et al. A method to increase the energy density of supercapacitor cells by the addition of multiwall carbon nanotubes into activated carbon electrodes [J]. Carbon, 2014, 68: 58-66.
  • 6ZHU Y, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation ofgraphene [J]. Science, 201 l, 332(6037): 1537-1541.
  • 7RUDGE A, DAVEY J, RAISTR1CK I, et al. Conducting polymers as active materials in electrochemical capacitors [J]. Journal of Power Sources, 1994, 47(1/2): 89-107.
  • 8EI-KADY M K IHNS M, LI M P, et al. Engineering three-dimensional hybrid supcrcapacitors and microsupercapacitors for high-performance integrated energy storage [J]. PNAS, 2015, 112: 4233-4238.
  • 9RUDGE A, RAISTRICK I, GOTTESFELD S, et al. A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors [J]. Electrochimica Acta, 1994, 39(2): 273-287.
  • 10BELANGER D, REN X M, DAVEY J, et al. Characterization and long-term performance of polyaniline-based electrochemical capacitors [J]. Journal of the Electrochemical Society, 2000, 147(8): 2923-2929.

共引文献62

同被引文献22

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部