期刊文献+

基于深度学习的时间序列算法综述 被引量:17

A Survey of Time Series Algorithms Based on Deep Learning
下载PDF
导出
摘要 绝大多数基于机器学习的时间序列分析方法都是人工专家提取特征后进行分析,随着深度学习的快速发展,端到端的方式在时间序列分析领域的应用越来越多,同时整体的方法也变得更加成熟。因此,本文对近年来基于深度学习的时间序列分析方法进行讨论,从应用,网络架构以及思想等方面总结了最新的时间序列预测、分类以及异常检测等任务的深度学习方法,为了解时间序列深度学习解决方案的技术以及发展趋势提供了参考。 Most of the time series analysis methods based on machine learning are analyzed by artificial experts.With the rapid development of deep learning,the end-to-end method is applied more and more in the field of time series analysis,and the overall method is also Become more mature.Therefore,this paper discusses the method of time series analysis based on deep learning in recent years,and summarizes the latest deep learning methods of time series prediction,classification and anomaly detection from the aspects of application,network architecture and ideas,in order to understand the depth of time series.The technology and development trends of learning solutions provide a reference.
作者 沈旭东 SHEN Xu-dong
出处 《信息技术与信息化》 2019年第1期71-76,共6页 Information Technology and Informatization
关键词 时间序列 深度学习 预测 分类 异常检测 Time Series Deep Learning Review Predict Classfication Anomaly Detection
  • 相关文献

参考文献1

二级参考文献41

  • 1Xing Z, Pei J, Keogh E. A brief survey on sequence classification. ACM SIGKDD Explorations Newsletter, 2010, 12(1): 40-48.
  • 2Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E. Querying and mining of time series data: experimental comparison of represen?tations and distance measures. Proceedings of the VLDB Endowment, 2008, 1(2): 1542-1552.
  • 3Orsenigo C, Vercellis C. Combining discrete svm and fixed cardinal?ity warping distances for multivariate time series classification. Pattern Recognition,2010,43(11~ 3787-3794.
  • 4Batal I, Sacchi L, Bellazzi R, Hauskrecht M. Multivariate time series classification with temporal abstractions. In: Proceedings of FLAIRS Conference. 2009.
  • 5Haselsteiner E, Pfurtscheller G. Using time-dependent neural networks for EEG classification. IEEE Transactions on Rehabilitation Engineer?ing, 2000, 8(4): 457-463.
  • 6Kampouraki A, Manis G, Nikou C. Heartbeat time series classifica?tion with support vector machines. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(4): 512-518.
  • 7Reiss A, Stricker D.lntroducing a modular activity monitoring system. In: Proceedings of IEEE Annual International Conference on Engi?neering in Medicine and Biology Society. 2011,5621-5624.
  • 8Batista G E A P A, Wang X, Keogh E J. A complexity-invariant dis- tance measure for time series. In: Proceedings of SIAM Conference on Data Mining. 2011.
  • 9Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E. Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discov?ery and Data Mining. 2012,262-270.
  • 10Xi X, Keogh E J, Shelton C R, Wei L, Ratanamahatana CA. Fast time series classification using numerosity reduction. In: Proceedings of the 23rd International Conference on Machine Learning. 2006, 1033-1040.

共引文献21

同被引文献136

引证文献17

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部