期刊文献+

基于SKF多传感器融合的无人机航迹规划 被引量:4

UAV Route Planning Based on SKF Multi-sensor Fusion
下载PDF
导出
摘要 针对无人机在未知环境下航迹规划难的问题,提出一种基于开关卡尔曼滤波器(switching Kalman filter,SKF)无人机定位和航迹规划的方法。根据多假设理论,建立地图观测数据,结合基于INS/GPS/GIS多传感器融合的航迹匹配方法,使用SKF算法完成多传感器融合和多模型的参数估计,实现无人机的自主定位和航迹规划。仿真试验结果表明:该算法稳定性好、收敛速度较快、计算复杂度小,具有较高的航迹估计精度。 Aiming at the difficulty of UAV route planning in unknown environment,a method of positioning and route planning based on switched Kalman filter(SKF)is proposed.According to multi-hypothesis theory,the map observation data is established.Combined with the route matching method based on INS/GPS/GIS multi-sensor fusion,the multi-sensor fusion and multi-model parameter estimation are completed by using SKF algorithm to realize the autonomous positioning and route of the UAV planning.Simulation results show that the proposed algorithm has good stability,fast convergence speed,low computational complexity and high accuracy of track estimation.
作者 冯媛 任宝祥 王谦喆 杨啸天 李哲 Feng Yuan;Ren Baoxiang;Wang Qianzhe;Yang Xiaotian;Li Zhe(School of Air Traffic Control & Navigation,Air Force Engineering University,Xi’an 710051,China;Military Representative Office in No.769 Factory,Baoji 721006,China)
出处 《兵工自动化》 2019年第2期45-49,共5页 Ordnance Industry Automation
关键词 SKF 多传感融合 全球定位系统 航迹匹配 地理信息系统 SKF multi-sensor fusion GPS route matching geographic information system(GIS).
  • 相关文献

参考文献4

二级参考文献45

  • 1金飞虎,洪炳熔,高庆吉.基于蚁群算法的自由飞行空间机器人路径规划[J].机器人,2002,24(6):526-529. 被引量:52
  • 2刘军祥,王永吉,Matthew Cartmell.一种改进的RM可调度性判定算法[J].软件学报,2005,16(1):89-100. 被引量:16
  • 3C.Zheng, M.Ding, C Zhou. Real-time route planning for unmanned air vehicle with an evolutionary algorithm[J].International Journal of Pattern Recognition and Artificial Intelligence,2003,17(1):63-81.
  • 4S.A.Bortoff. Path planning for UAVs[A].//the Proceedings of the American Control Conference,Chicago,USA, 2000:364-368.
  • 5R.J.Szczerba, P.Galkowski,l.S.Glickstein. A nassion adaptable route planner for intelligent guidance/ navigation system[A].//the Proceedings of 36th, AIAA Conference(Aerospace Sciences Meeting and Exhibit), 1998.
  • 6T.Asano,L.Guibas, J.Hershberger, et al. Visibility-polygon search and Euclidean shortest path[A].//the Proceedings of 26^th Symposium on Foundations of Computer Science,Berkeley CA, 1989:155-164.
  • 7F.Aurenhammer. Voronoi diagrams-A survey of fundamental geometrie data structure.ACM Computing Survey, 1991,23(3):345-405.
  • 8J.F.Canny. The Complexity of Robot Motion Planning[M].MIT press,Cambridge,Mass, 1988.
  • 9Y.Hwing, N.Ahujia. Gross motion planning-a survey[J].ACM Computing Survey, 1992,24(3):219-291.
  • 10J.C.Latombe. Robot Motion Planning[D]. Kluwer. Boston, MA,1991.

共引文献11

同被引文献29

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部