期刊文献+

基于神经网络的双燃料发动机活塞最高温度预测

Prediction of maximum temperature of piston in dual fuel engine based on neural network
下载PDF
导出
摘要 由硬度塞测法和ANSYS有限元软件建立双燃料发动机活塞的温度场模型,得到不同工况下活塞最高温度。采用Elman神经网络建立活塞最高温度与双燃料发动机转速、扭矩、替代率、喷油提前角以及NOx浓度参数关系模型。结果表明:该模型变量物理意义明确、形式简单便于实现,计算得到的拟合值与实测值的最大相对误差不超过2.17%,对双燃料发动机活塞最高温度的预测效果好,所建模型为保护发动机的活塞提供一个方法。 The temperature field model of the piston of the dual-fuel engine is established by the method of hardness plug test and ANSYS finite element software,and the maximum temperature of the piston under different working conditions is obtained.The Elman neural network is used to establish the model of the relationship between the maximum piston temperature and the rotational speed,torque,substitution rate,injection advance angle and NOx concentration of the dual fuel engine.The results show that the model has clear physical meaning and simple form,and the maximum relative error between the calculated and measured values is less than 2.17%.The prediction of the maximum temperature of the dual-fuel engine piston is good.The model provides a method for protecting the piston of the engine.
作者 李坤颖 王辉静 孔令晶 Li Kunying;Wang Huijing;Kong Lingjing(School of Computer Sciences,Shenzhen Institute of Information Technology,Shenzhen,Guangdong,China 518172)
出处 《深圳信息职业技术学院学报》 2018年第5期27-31,共5页 Journal of Shenzhen Institute of Information Technology
基金 广东省自然科学基金资助项目(2018A030310664)
关键词 双燃料发动机 温度场 ELMAN神经网络 dual fuel engine temperature field Elman neural network
  • 相关文献

参考文献3

二级参考文献25

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部