期刊文献+

五阶WENO格式求解一维Euler方程 被引量:1

Fifth Order WENO Scheme for Solving One-dimensional Euler Equations
下载PDF
导出
摘要 应用加权本质无震荡(WENO)格式耦合低耗散E-CUSP格式,空间采用低耗散E-CUSP迎风格式,时间采用显式Runge-Kutta推进方法,分别对一维激波管问题和一维低密度流问题进行了数值模拟,发现WENO格式耦合低耗散E-CUSP算法在接触间断和激波处的捕捉效果有了显著地提高。结果表明,WENO格式精度高,稳定性能好,将WENO格式耦合低耗散E-CUSP算法应用到一维Euler方程的数值解中,对接触间断和激波的捕捉能力较强,尤其是对激波的捕捉能力,仅需要2~3个网格单元,为后续将其推广到二维问题上做了良好的铺垫。 The performance of coupled low dissipation E-CUSP scheme with high precision weighted essentially non-oscillatory WENO scheme is investigated by solving the one-dimensional shock tube problem and the one-dimensional low density flow problem.With the space adopts the low-dissipation E-CUSP upwind scheme and the time adopts the explicit Runge-Kutta propulsion method.It is found that WENO scheme coupled with low dissipation E-CUSP scheme in space.The capture effect of -CUSP algorithm in contact discontinuities and shock waves has been significantly improved.The results show that the WENO scheme has high accuracy and good stability.And WENO scheme coupled with low dissipation E-CUSP algorithm is applied to the numerical solution of one-dimensional Euler equation.It has strong ability to capture contact discontinuities and shock waves,especially for shock waves,only two or three grid elements are needed.It lays a good foundation for extending it to two-dimensional problems.
作者 王亚萍 郑秋亚 苏宁亚 梁益华 WANG Ya-ping;ZHENG Qiu-ya;SU Ning-ya;LIANG Yi-hua(School of Science,Chang′an University,Xi′an 710064,China;Aeronautical Laboratory of Computational Fluid Dynamics,Xi′an Aeronautics Computing Technique Research Institute,AVIC,Xi′an 710068,China)
出处 《航空计算技术》 2019年第1期88-92,共5页 Aeronautical Computing Technique
基金 航空科学基金项目资助(2015 ZA31002)
关键词 计算流体力学 E-CUSP格式 加权本质无震荡格式 一维Euler方程 低密度流 激波管 computational fluid dynamics E-CUSP scheme weighted essentially non-oscillatory scheme one-dimensional Euler equation low density flow shock tube
  • 相关文献

参考文献1

二级参考文献8

  • 1Jiang G S,Shu C W.Efficient implementation of weighted ENO schemes[J].J Comp Phys,1996,126:202-228.
  • 2Stoker J J.Waterwaves[M].NewYork:Intersience Publishers,1957.
  • 3Harten A.High resolution schemes for hyperbolic conservation laws[J].J Comp Phys,1983,49:357-393.
  • 4Harten A,Engquist B,Osher S,et al.Uniformly high order Essentially Non-Oscillatory scheme[J].J Comp Phys,1987,71:231-303.
  • 5Liu X D,Osher S,Chan T.Weighted essentially nonoscillatory schemes[J].J Comp Phys,1994,115:200-212.
  • 6Shu C W,Osher S.Effient implementation of essentially nonoscillatory shock capturing schemes[J].J Comp Phys,1988,77(2):439-471.
  • 7魏文礼(Wei Wen-li).计算水力学理论及应用(Computational Hydrodynamics Theory and Application)[M].西安:陕西科技出版社(Xi'an:Shaanxi Science and Technology Press),2001.80-94.
  • 8Roe P L.Approximate Riemann solvers,parameter vectors and difference schemes[J].J Comp Phys,1981,43:357-359.

共引文献2

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部