期刊文献+

基于融合特征的现勘图像检索结果优化算法 被引量:9

Multi-feature Fusion Based Retrieval Results Optimization for Crime Scene Investigation Image Retrieval
下载PDF
导出
摘要 刑侦现勘图像数据库是具有保密性高、图像内容罕见等极具行业特色的图像数据库.针对现勘图像内容复杂、目标物体不明确的特点,提出了DCT-DCT波纹理特征,并与HSV颜色直方图特征、GIST特征相融合构成融合特征.与常用的图像特征相比,DCT-DCT波纹理特征能够得到较高的检索效率,而融合特征的平均检索查准率高于构成其本身的三种特征的平均检索查准率.最后,将语义分析技术引入到检索过程中,提出基于检索结果优化的现勘图像检索算法,利用支持向量机(Support Vector Machine,SVM)分类器对查询图像进行语义提取,并对初次检索的结果进行语义分析,根据初检结果中语义类别的占比选择二次检索方案,该算法能在按例查询的基础上进一步提高平均检索查准率. The image database of crime scene investigation (CSI)has the charact eristics of high confidentiality,rare image content and so on.Aiming at the complexity of the content and the ambiguity of the target object,the DCT-DCT wave texture feature is proposed,which is fused with HSV color histogram feature and GIST feature to form the fusion feature.Compared with the commonly used image features,DCT-DCT wave texture feature can get higher retrieval efficiency,and the average retrieval precision rate of the fused features is higher than that of the three features.Finally,the semantic analysis technology is introduced into the retrieval process,and an image retrieval algorithm based on the optimization of retrieval results is proposed.Support vector machine (SVM)classifier was used to extract the semantic of the query image.The semantic analysis of the results of the first retrieval is carried out,and the second retrieval scheme is selected according to the proportion of semantic categories in the initial retrieval results.The algorithm can further improve the average retrieval accuracy based on case-by-case query.
作者 刘颖 胡丹 范九伦 王富平 李大湘 LIU Ying;HU Dan;FAN Jiu-lun;WANG Fu-ping;LI Da-xiang(Center for Image and Information Processing,Xi’an University of Posts & Telecommunications,Xi’an,Shaanxi 710121,China;Key Lab of Electronic Information Processing with Applications in Crime Scene Investigation,Ministry of Public Security,Xi’an,Shaanxi 710121,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2019年第2期296-301,共6页 Acta Electronica Sinica
基金 公安部科技强警(No.2016GABJC51) 国家自然科学基金(No.61671377)
关键词 刑侦现勘图像 现勘图像检索 多特征融合 检索方法 支持向量机 crime scene investigation image crime scene investigation image retrieval multi-feature fusion retrieval method support vector machine
  • 相关文献

参考文献5

二级参考文献54

  • 1郑永红.犯罪信息工作中的数据挖掘技术[J].广东公安科技,2005,13(1):39-41. 被引量:8
  • 2钱进.最大频繁项目集挖掘技术研究与展望[J].微计算机应用,2005,26(6):652-654. 被引量:7
  • 3汪阳,黄天戍,杜广宇.一种基于聚类和主成分分析的异常检测方法[J].计算机工程与应用,2006,42(21):21-24. 被引量:4
  • 4郝宏奎.论并案侦查条件的科学运用[J].中国人民公安大学学报(社会科学版),2006,22(4):40-47. 被引量:18
  • 5Armstrong A, Jiang J (2001) An efficient image indexing algorithm in JPEG compressed domain.( ICCE' 2001 ), June 2001.
  • 6Berman AP, Shapiro LG (1999) A flexible image database system for content -based retrieval.
  • 7N. Merhav and V. Bhaskaran, "Fast algorithms for DCT- domain image down -sampling and for inverse motion compensation," IEEE Transactions on Circuits and Systems for Video Technology, June1997.
  • 8B. K. Natarajan and B. Vasudev, "A fast approximate algorithm for scaling down digital images in the DCT domain," IEEE Int. Conf. Image Processing, Oct. 1995.
  • 9Jeon, J. Park, and J. Jeong, "Huffman coding of DCT coefficients using dynamic codeword assignment and adaptive codebook selection," Signal Processing; Image Commun., 1998.
  • 10[美]RalfSteinmetz KlaraNahrstedt.多媒体原理(第一册)媒体编码及内容分析(英译版)[M].电子工业出版社,2003..

共引文献45

同被引文献83

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部