摘要
文章研究一类食饵染病且具有非线性功能反应函数S~α(α>1)的传染病模型,讨论系统平衡点的存在性,借助特征根法,Routh-Hurwitz判别法,Lyapunov-LaSalle不变集法给出平衡点稳性的条件,得出无病平衡点的全局稳性和地方病平衡点的不稳性。
This paper studies a class of predator-prey epidemic and infectious disease model with nonlinear response function, the conditions of existence of the equilibrium point in the system, by means of eigenvalue method, Routh-Hurwitz discriminant analysis, Lyapunov-LaSalle invariant set method,conditions of stability of equilibriumwas was given,the global stability of the disease-free equilibrium and the endemic equilibrium point instability was established.
作者
于颖
王冲
YU Ying;WANG Chong(Dept. of Math., Daqing Normal University, Heilongjiang Daqing 163712, China)
出处
《齐齐哈尔大学学报(自然科学版)》
2019年第2期91-94,共4页
Journal of Qiqihar University(Natural Science Edition)
基金
黑龙江省大学生创新项目(201710235032)
关键词
食饵染病
捕食系统
平衡点
稳定性
constant input rate
predator-prey system
equilibrium point
stability