期刊文献+

食饵染病且具有非线性功能反应函数的传染病模型的稳性分析

Stability analysis of an infectious disease model with disease and nonlinear functional response function
下载PDF
导出
摘要 文章研究一类食饵染病且具有非线性功能反应函数S~α(α>1)的传染病模型,讨论系统平衡点的存在性,借助特征根法,Routh-Hurwitz判别法,Lyapunov-LaSalle不变集法给出平衡点稳性的条件,得出无病平衡点的全局稳性和地方病平衡点的不稳性。 This paper studies a class of predator-prey epidemic and infectious disease model with nonlinear response function, the conditions of existence of the equilibrium point in the system, by means of eigenvalue method, Routh-Hurwitz discriminant analysis, Lyapunov-LaSalle invariant set method,conditions of stability of equilibriumwas was given,the global stability of the disease-free equilibrium and the endemic equilibrium point instability was established.
作者 于颖 王冲 YU Ying;WANG Chong(Dept. of Math., Daqing Normal University, Heilongjiang Daqing 163712, China)
出处 《齐齐哈尔大学学报(自然科学版)》 2019年第2期91-94,共4页 Journal of Qiqihar University(Natural Science Edition)
基金 黑龙江省大学生创新项目(201710235032)
关键词 食饵染病 捕食系统 平衡点 稳定性 constant input rate predator-prey system equilibrium point stability
  • 相关文献

参考文献1

二级参考文献11

  • 1陈晓鹰,朱婉珍.具有HollingⅡ型功能性反应的捕食者食饵种群SIS模型定性分析[J].厦门大学学报(自然科学版),2005,44(1):16-19. 被引量:9
  • 2宋慧敏,刘桂真.ON f-EDGE COVER-COLOURING OF SIMPLE GRAPHS[J].Acta Mathematica Scientia,2005,25(1):145-151. 被引量:1
  • 3ANDERSON R M, MAY P M. The invasion, persistence, and spread of infection diseases within animal and plant com- munities [J]. Phil Trans R Soe, 1986(314) : 533-570.
  • 4VENTURINO E. The influence of diseases on Lotka-Volterra system [ J]. Roekymount J Math, 1994 (24) : 389-402.
  • 5VENTURINO E. Epidemics in predator-prey models : disease in the prey [ C ] //ARINO O, AXELRODO, KIMMELM, et al. Mathematical Population Dynamics: Analysis of Heterogeneity. Winnipeg: Wuerz Publishing, 1995: 381-393.
  • 6CHATYOPADHYAY J, ARINO O. A predator-prey model with disease in the prey [J]. Nonlinear Anal, 1999(36): 749-766.
  • 7XIAO Y N, CHEN L S. Analysis of three species eeo-epidemiological model [J]. J Math Appl, 2001 (258) : 733-754.
  • 8XIAO Y N, CHEN L S. Modeling and analysis of a predator-prey model with disease in the prey [ J ]. Math Biosci, 2001 ( 171 ) : 59-82.
  • 9HETHCOTE H W. Four predator-prey models with infectious disease [ J]. Mathematical and Computer Modelling, 2001, 34 : 849-858.
  • 10张靖,宋燕,詹丽.食饵具有流行病的捕食-被捕食(SI)模型的分析[J].渤海大学学报(自然科学版),2008,29(2):173-176. 被引量:4

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部