期刊文献+

粒子群算法在无线网络节点位中的应用研究 被引量:1

PSO-based localization algorithm in wireless sensor networks
下载PDF
导出
摘要 随着无线通信技术的发展以及物联网设备在室内环境的广泛部署,作为物联网服务的重要支撑技术之一的无线传感器网络的位技术再一次成为工业界和学术界的研究热点。本文根据DV-Hop算法在无线传感器网络位过程中存在的误差问题,引入粒子群算法对位误差进行优化,提出PSO-DV-Hop算法。仿真实验结果表明,本文提出的PSO-DV-Hop算法(基于粒子群算法的DV-Hop位算法)的位精确度较DV-Hop算法提高25%左右,在实际应用中具有重要的参考意义。 With the development of wireless communication technologies and the widely deployment of the Internet of Thing(IoT)devices in indoor environment,the location service in Wireless Sensor Networks(WSN)becomes the hot topic in both industry and academic since it is the supporting technology of IoT applications.This paper proposes PSO-DV-Hop algorithm which introduces Particle Swarm Optimization(PSO)to increase the localization accuracy of DV-Hop algorithm.The simulation result demonstrates that PSO-DV-Hop algorithm can improve the localization accuracy by 25%compared with DV-Hop algorithm which has significance in practical IoT applications.
作者 高薇 GAO Wei(College of Information Management, Minnan University of Science and Technology, Fujian Shishi, 362700,China)
出处 《齐齐哈尔大学学报(自然科学版)》 2019年第1期9-13,22,共6页 Journal of Qiqihar University(Natural Science Edition)
基金 福建省中青年教师教育科研项目资助(JA12367)
关键词 物联网 无线传感器网络 DV-HOP定位算法 PSO算法 IoT WSN DV-Hop algorithm PSO algorithm
  • 相关文献

参考文献2

二级参考文献12

  • 1史龙,王福豹,段渭军,任丰厚.无线传感器网络Range-Free自身定位机制与算法[J].计算机工程与应用,2004,40(23):127-130. 被引量:114
  • 2Eberharl R, Kennedy J. A new optimizer using particle swarm theory [ A ]. Proceedings of the International Symposium on Micro Machine and Human Science [ C ]. Piscataway, N J, USA: IEEE, 1995. 39-43.
  • 3Kennedy J, Eberhart R. Particle swarm optimization [ A ]. Proceedings of the IEEE International Conference on Neural Networks [C]. Piscataway, NJ, USA: IEEE, 1995. 1942-1948.
  • 4Kennedy J, Eberhart R, Shi Y. Swarm Intelligence [ M ]. San Francisco, USA: Morgan Kaufmann Publishers, 2001.
  • 5Juang C F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34 (2) : 997 - 1006.
  • 6Li L L, Wang L, Liu L H. An effective hybrid PSOSA strategy for optimization and its application to parameter estimation [ J ]. Applied Mathematics and Computation, 2006, 179 ( 1 ) : 135-146.
  • 7Ye B, Zhu C Z, Guo C X, et al. Generating extended fuzzy basis function networks using hybrid algorithm [ A]. Proceedings of the 2nd International Conference on Fuzzy Systems and Knowledge Discovery [ C]. Berlin, Germany: Springer-Verlag, 2006. 79- 88.
  • 8Price K V. Differential evolution: A fast and simple numerical optimizer [ A]. Proceedings of the 1996 Biennial Conference of the North American Fuzzy Information Processing Society [ C ].Piscataway, NJ, USA: IEEE, 1996. 524-527.
  • 9Shi Y, Eberhart R. A modified particle swarm optimizer [ A ]. Proceedings of the 1998 IEEE International Conference on Evolutionary Computation [C]. Piscataway, NJ, USA: IEEE, 1998. 69 - 73.
  • 10Store R. On the usage of differential evolution for function optimi- zation [ A]. Proceedings of the Biennial Conference of the North American Fuzzy Information Processing Society [ C]. Piscataway, NJ, USA: IEEE. 1996. 519-523.

共引文献73

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部