摘要
Low-carbon steel plates were successfully subjected to normal friction stir processing(NFSP) in air and submerged friction stir processing(SFSP) under water, and the microstructure, mechanical properties, and corrosion behavior of the NFSP and SFSP samples were investigated. Phase transformation and dynamic recrystallization resulted in fine-grained ferrite and martensite in the processed zone. The SFSP samples had smaller ferrites(5.1 μm), finer martensite laths(557 nm), and more uniform distribution of martensite compared to the NFSP samples. Compared to the base material(BM), the microhardness of the NFSP and SFSP samples increased by 19.8% and 27.1%, respectively because of the combined strengthening effects of grain refinement, phase transformation, and dislocation. The ultimate tensile strengths(UTSs) of the NFSP and SFSP samples increased by 27.1% and 38.7%, respectively. Grain refinement and martensite transformation also improved the electrochemical corrosion properties of the low-carbon steel. Overall, the SFSP samples had better mechanical properties and electrochemical corrosion resistance than the NFSP samples.
Low-carbon steel plates were successfully subjected to normal friction stir processing(NFSP) in air and submerged friction stir processing(SFSP) under water, and the microstructure, mechanical properties, and corrosion behavior of the NFSP and SFSP samples were investigated. Phase transformation and dynamic recrystallization resulted in fine-grained ferrite and martensite in the processed zone. The SFSP samples had smaller ferrites(5.1 μm), finer martensite laths(557 nm), and more uniform distribution of martensite compared to the NFSP samples. Compared to the base material(BM), the microhardness of the NFSP and SFSP samples increased by 19.8% and 27.1%, respectively because of the combined strengthening effects of grain refinement, phase transformation, and dislocation. The ultimate tensile strengths(UTSs) of the NFSP and SFSP samples increased by 27.1% and 38.7%, respectively. Grain refinement and martensite transformation also improved the electrochemical corrosion properties of the low-carbon steel. Overall, the SFSP samples had better mechanical properties and electrochemical corrosion resistance than the NFSP samples.
基金
financially supported by the National Natural Science Foundation of China (Nos. U1360105, U1760201, and 51574192)