期刊文献+

高阶差等比数列的通项与前n项的和 被引量:6

General Term and Sum Formula of High Order Difference Geometrie Series
下载PDF
导出
摘要 通过对某一数列应用逐差法,使得若干阶差后得到一等比数列.该数列又称为高阶差等比数列.本文仅研究讨论高阶差等比数列的通项及前n项和的公式,并由该数列的特点得到规律性计算公式,从而解决了高阶差等比数列的通项及前n项求和问题. By applying the successive difference method to a sequence of numbers,an equal ratio sequence is obtained after several order differences.This sequence is also called the equal ratio sequence of higher order differences.This paper only studies and discusses the formula of the general term and the sum of the preceding term of the equal ratio sequence of higher order differences,and obtains the regular calculation formula from the characteristics of the sequence,thus resolving the equal ratio of higher order differences.The sum of the general terms and the preceding items.
作者 戴中林 DAI Zhong-lin(School of Mathematics and Information,China West Normal University,Nanchong Sichuan 637002,China)
出处 《大学数学》 2019年第1期80-83,共4页 College Mathematics
关键词 逐差法 等比数列 通项公式 求和公式 method of successive difference geometric sequence of number general formula summation formula
  • 相关文献

参考文献3

二级参考文献5

共引文献12

同被引文献9

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部