期刊文献+

Mechanism of Phase Lag Between Current Speed and Suspended Sediment: Combined Effect of Erosion, Deposition, and Advection 被引量:1

Mechanism of Phase Lag Between Current Speed and Suspended Sediment: Combined Effect of Erosion, Deposition, and Advection
下载PDF
导出
摘要 To retrieve and explain the phase lag between current speed and suspended sediment concentration(SSC), erosion, deposition, and advection were isolated as primary processes of sediment movement in a three-dimensional model. The response time was proved to be one of the reasons for the phase lag, as time is needed for suspension to diffuse from bottom to surface. A fitted Shields diagram was introduced into the model to reflect the relationship between SSC and shear stress, between shear stress and critical shear stress, as well as between SSC and critical shear stress for erosion. It takes some time for shear stress to increase to the critical value after high or low tide, and this was proved to be an important contributor to the phase lag. Overall, the variation of vertically integrated SSC is influenced by erosion mass flux, deposition mass flux, and advection flux. The phase pattern of erosion mass flux is consistent with the pattern of current if there was no wave action. However, phase difference is produced by the influence of deposition mass flux and advection. In this study, SSC peak/trough mostly occurred near the moment erosion mass flux approximately equaled deposition mass flux and would be impacted by advection. The time required for instantaneous variation of suspension to get to 0 after current peak/trough represents the phase lag between current speed and SSC. To retrieve and explain the phase lag between current speed and suspended sediment concentration(SSC), erosion, deposition, and advection were isolated as primary processes of sediment movement in a three-dimensional model. The response time was proved to be one of the reasons for the phase lag, as time is needed for suspension to diffuse from bottom to surface. A fitted Shields diagram was introduced into the model to reflect the relationship between SSC and shear stress, between shear stress and critical shear stress, as well as between SSC and critical shear stress for erosion. It takes some time for shear stress to increase to the critical value after high or low tide, and this was proved to be an important contributor to the phase lag. Overall, the variation of vertically integrated SSC is influenced by erosion mass flux, deposition mass flux, and advection flux. The phase pattern of erosion mass flux is consistent with the pattern of current if there was no wave action. However, phase difference is produced by the influence of deposition mass flux and advection. In this study, SSC peak/trough mostly occurred near the moment erosion mass flux approximately equaled deposition mass flux and would be impacted by advection. The time required for instantaneous variation of suspension to get to 0 after current peak/trough represents the phase lag between current speed and SSC.
出处 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第1期43-56,共14页 中国海洋大学学报(英文版)
基金 supported by the National Natural Science Foundations of China (Nos. 41276084 and 41406100)
关键词 phase LAG SEDIMENT transport critical SHEAR stress suspended SEDIMENT phase lag sediment transport critical shear stress suspended sediment
  • 相关文献

同被引文献15

引证文献1

二级引证文献1

  • 1尤再进,尹宝树.前言[J].海洋与湖沼,2022,53(4):789-790.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部