期刊文献+

结合实时优化遗传算法的磨削机器人阻抗控制 被引量:7

Impedance control of grinding robot based on real-time optimization genetic algorithm
下载PDF
导出
摘要 针对机械臂与环境接触时恒力跟踪动态响应速度慢的问题,在研究过程中,依据机械臂恒力跟踪的响应速度和控制精度的综合性能指标,通过改进离线优化中遗传算法的交叉、变异和计算适应度值等操作算子的处理方式,实现了阻抗控制方法中的控制参数的实时优化.仿真结果表明:与传统控制方法相比,该方法可以在保证控制精度的前提下,提高了机械臂与环境接触力的动态响应速度,降低了控制过程超调量,获得了较好的调节品质. Aiming at the problem of slow dynamic response during constant force tracking when the manipulator is in contact with the environment. In the research process, according to the comprehensive performance index of the response speed and control precision of the mechanical arm constant force tracking, the processing methods of the operator, such as the crossover, variation and calculation fitness value of the genetic algorithm in off line optimization, are improved, and the real-time optimization of control parameters for the impedance control is realized. The simulation results show that compared with the traditional control method, the method can improve the dynamic response speed of the mechanical arm and the environment contact force under the premise of ensuring the control precision, reduce the overshoot of the control process, and obtain better adjustment quality.
作者 刘哲 邹涛 孙威 陆云松 LIU Zhe;SUN Wei;LU Yun-song(Key Laboratory of Networked Control System of Chinese Academy of Sciences, Shenyang Institute of Automationof Chinese Academy of Sciences, Shenyang Liaoning 110016, China;Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang Liaoning 110016, China;University of Chinese Academy of Sciences, Beijing 110049, China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2018年第12期1788-1795,共8页 Control Theory & Applications
基金 国家自然科学基金项目(61773366 61533015)资助~~
关键词 磨削机器人 遗传算法 机械臂力控制 grinding robot genetic algorithm force control of robot
  • 相关文献

参考文献3

二级参考文献32

  • 1梁捷,陈力.关节柔性的漂浮基空间机器人基于奇异摄动法的轨迹跟踪非奇异模糊Terminal滑模控制及柔性振动抑制[J].振动与冲击,2013,32(23):6-12. 被引量:11
  • 2邹涛,刘红波,李少远.锅炉汽包水位非自衡系统的预测控制[J].控制理论与应用,2004,21(3):386-390. 被引量:30
  • 3QIN S J, BADGWELL A. A survey of industrial model predictive control technology [J]. Control Engineering Practice, 2003, 7(11): 733 - 764.
  • 4CULTER C R, RAMAKER B L. Dynamic matrix control-a computer control algorithm [C]//The AIChE 86th National Meeting. Houston TX: IEEE, 1979.
  • 5CLARKE D W, MOHTADI C. Properties of generalized predictive control [J]. Automatica, 1989, 25(6): 859 - 873.
  • 6RICHALET J, RAULT A, TESTUD J L, et al. Model predictive heuristic control: application to industrial process [J]. Automatica, 1978, 14(5): 413- 428.
  • 7ZHANG B, YANG W, ZONG H, et al. A novel predictive control al- gorithm and robust stability criteria for integrating processes [J]. ISA Transactions, 2011, 50(3): 454- 460.
  • 8RODRIGUES M A, ODLOAK D. An infinite horizon model predic- tive control for stable and integrating processes [J]. Computers and Chemical Engineering, 2003, 27(8/9): 1113 - 1128.
  • 9CARRAPICO O L, ODLOAK D. A stable model predictive control for integrating processes [J]. Computers and Chemical Engineering, 2005, 29(5): 1089 - 1099.
  • 10SANTORO B F, ODLOAK D. Closed-loop stable model predictive control of integrating systems with dead time [J]. Journal of Process Control, 2012, 22(7): 1209 - 1218.

共引文献38

同被引文献58

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部