摘要
对Rosenau-Kdv-RLW方程提出了一种指数波积分的伪谱方法。此方法首先在空间方向应用Fourier伪谱方法,然后在时间方向应用Gautschi型积分公式,从而在空间方向和时间方向分别达到了谱精度和二阶精度。所建立的格式是显式的,并可利用快速Fourier变换进行高效的计算。数值结果验证了所提格式的有效性。
An exponential wave integrator Fourier pseudo-spectral method is proposed for solving the Rosenau-Kdv-RLW equation.The numerical method is first based on the Fourier pseudo-spectral method for spatial discretization and the Gautschi-type exponential integrator for temporal approximation,which generates second order accuracy in time and spectral accuracy in space,respectively.The scheme is fully explicit and efficient thanks to the fast discrete Fourier transform.Numerical results are presented to illustrate the effectiveness of our scheme.
作者
邓宇轩
DENG Yu-xuan(College of Management,Hangzhou Dianzi University,Hangzhou 310000,China)
出处
《滨州学院学报》
2018年第6期39-46,共8页
Journal of Binzhou University