期刊文献+

汽油层流燃烧速度的测量及其替代物模型研究 被引量:2

Research on the Laminar Burning Velocity and Surrogate Models of Gasoline
下载PDF
导出
摘要 针对实际汽油组分复杂导致数值模拟研究困难的问题,采用球形火焰法,在定容燃烧弹上测量了初始温度分别为358、403、448 K,初始压力分别为0.1、0.2、0.5 MPa,当量比为0.8~1.5工况下,实际汽油、正庚烷、异辛烷、甲苯、异辛烷/正庚烷混合燃料(PRF)、甲苯/异辛烷/正庚烷混合燃料(TRF)的层流燃烧速度,分析了初始温度、压力以及当量比对汽油的层流燃烧速度的影响规律,对比了不同替代物模型对实际汽油的层流燃烧速度的预测结果。基于实验结果,构建了适合我国汽油的双组分和三组分汽油替代物模型,对比结果表明,在本研究的实验工况范围内,三组分汽油替代物模型比双组分汽油替代物模型能够更好预测实际汽油层流燃烧速度。应用Chemkin软件和KAUST清洁燃烧研究中心近期发展的汽油替代物机理,对本研究实验数据进行了数值仿真,该机理对实验数据给出了合理预测。利用本研究提出的汽油替代物模型,可对实际汽油的层流燃烧速度进行合理的预测。 The spherical flame method was adopted for the problem that numerical simulation research is somewhat difficult due to the complexity of the actual gasoline composition. Laminar burning velocities of actual gasoline were measured in a constant volume bomb. Measurements were also conducted for n-heptane, iso-octane, primary reference fuels (n-heptane and iso-octane blends), and toluene reference fuel (n-heptane, iso-octane and toluene blends). Experiments were performed at the equivalence ratios from 0.8 to 1.5, initial temperatures of 358, 403 and 448 K and pressures of 0.1, 0.2 and 0.5 MPa, respectively. The effects of initial temperature, pressure and equivalence ratio on laminar burning velocity were analyzed. Based on the experimental results, primary reference fuel surrogate model (PRF) and toluene reference fuel surrogate model (TRF) were proposed. The results showed that the TRF model could better predict the laminar burning velocity of actual gasoline than the PRF model. Besides, using the software CHEMKIN and the KAUST Clean Combustion Research Center’s recently developed gasoline surrogate, numerical simulation of the measured data was carried out, which gives a reasonable prediction of the measured data under the research conditions. Therefore, a reasonable numerical simulation study on actual gasoline could be carried out by using the gasoline surrogate model proposed in this study.
作者 徐昭华 胡二江 黄佐华 XU Zhaohua;HU Erjiang;HUANG Zuohua(State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2019年第3期36-42,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(91641124)
关键词 汽油 层流燃烧速度 实验测量 汽油替代物模型 gasoline laminar burning velocity experimental measurement gasoline surrogate model
  • 相关文献

参考文献3

二级参考文献35

  • 1张波,傅维标.二甲醚火焰传播速度的实验研究[J].燃烧科学与技术,2005,11(2):163-166. 被引量:11
  • 2张勇,黄佐华,廖世勇,王倩,蒋德明.天然气-氢气-空气混合气的层流燃烧速度测定[J].内燃机学报,2006,24(2):97-103. 被引量:73
  • 3Yu G, Law C K, Wu C K. Laminar Flame Speeds of Hydrogen Air Mixtures with Hydrogen Addition [ J ]. Combustion and Flame, 1986,63(1/2) :339-347.
  • 4Van Maaren A, Thung D S, Goey L P H. Measurement of Flame Temperature and Adiabatic Burning Velocity of Methane/Air Mixtures [ J ]. Combustion Sci Technol, 1994 ( 96 ) : 327 -344.
  • 5Gu X J, Haq M Z, Lawes M, et al. Laminar Burning Velocity and Markstein Lengths of Methane Air Mixtures [ J ]. Combustion and Flame,2000,121 (1/2) :41-58.
  • 6Liao S Y, Jiang D M, Gao J, et al. Measurements of Arkstein Numbers and Laminar Burning Velocities for Liquefied Petroleum Gas Air Mixtures[ J ]. Fuel,2004,83 (10) : 1281-1288.
  • 7Lamoureux N, Djebay li-Chaumeix N, Paillard C E. Laminar Flame Velocity Determination for H2-Air-He-CO2 Mixtures Using the Spherical Bomb Method [ J ]. Experimental Thermal and Fluid Science,2003,27(4) :385-393.
  • 8Bradley D, Gaskell P H, Gu X J. Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study [ J ]. Combustion and Flame, 1996,104 (1/2) : 176-198.
  • 9Liao S Y,Jiang D M,Gao J,et al. Measurements of Markstein Numbers and Laminar Burning Velocities for Natural Gas-Air Mixtures [J]. Energy & Fuels,2004,18(2) :316- 326.
  • 10Zhao Z,Kazakov A,Dryer F L.Laminar Flame Speed Study of Dimethyl Ether/Air Mixtures by Using Particle Image Velocimetry[ J].Combustion and Flame,2004,139 (1/2):52-60.

共引文献29

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部