期刊文献+

分布式能源接入后的电动汽车实时电价响应控制策略

Considering the Real-time Electricity Price Response Control Strategy of Electric Vehicles after Distributed Energy Access
下载PDF
导出
摘要 随着电动汽车的规模化应用,为了缓解电网的压力,越来越多的分布式能源被接入。然而,电动汽车充电站的可再生能源供给一般小于电动汽车充电负荷,须与大电网联合运行。针对分布式能源与电网之间的协同增效利用,提出了微电网内的充电站储能系统与电网相互协调的策略。在建立电动汽车负荷模型的基础上,根据微网内可再生能源实时出力与负荷需求的求解不平衡率,使充电站储能系统和大电网根据不平衡率按一定比例协同运行。当电动汽车接入电网充电时,首次利用强化学习算法建立电价控制模型,实现两者的能源协调控制。以某地区的微网为例进行仿真分析,通过对比不同用户响应度的配电网负荷和充电站储能系统,验证该策略在微电网与大电网协同运行优化的有效性。该策略发挥了充电站储能系统和电网的联合运行优势,减小了电网负荷峰谷差,优化了电力负荷曲线,对解决如何有效地结合分布式能源和大电网对电动汽车进行充电等问题具有一定的实际意义和价值。 With the large-scale application of electric vehicles,more and more distributed energy sources are connected in order to relieve the pressure on the power grid.However,the renewable energy supply of EV charging stations is generally smaller than the EV charging load and must be operated jointly with the large power grid.Therefore,aiming at the problem of synergistic utilization with distributed energy and power grid,this paper proposes a strategy of coordination between storage system with charging station energy and power grid in micro grid.Firstly,the electric vehicle load model is established.Secondly,according to the real-time energy output and load of renewable energy in the micro grid,the unbalance rate is obtained.Then the energy storage system of the charging station and the large power grid operate in a certain proportion on the basis of the unbalance rate.Thirdly,when the electric vehicle is connected to the power grid for charging,the intensive learning algorithm is used for the first time to establish the electricity price control model and realize the energy coordination control of both.Finally,the simulation analysis is carried out on the micro grid in a certain region.The results of the calculation show that the effectiveness of this strategy in the coordinated operation optimization of micro grid and large grid is verified by comparing the load of distribution network and the energy storage system of charging station with different user responsiveness.This strategy gives full play to the combined operation advantages of charging station energy storage system and power grid,reduces the peak and valley load difference of power grid,optimizes the power load curve,and has significant practical significance and value for solving problems such as how to effectively combine distributed energy sources and large power grid to charge electric vehicles.
作者 牛亚琳 李华玥 李松岭 杨涌文 Niu Yalin;Li Huayue;Li Songling;Yang Yongwen(Energy and Mechanical Engineering College,Shanghai Electric Power University;Energy and Mechanical Engineering College,Science and Technology Center Laboratory,Shanghai Electric Power University)
出处 《上海节能》 2019年第2期97-101,共5页 Shanghai Energy Saving
基金 上海市科学技术委员会科研计划项目(18DZ1203403)
关键词 分布式能源 电动汽车 实时电价 强化学习 Distributed Energy Electric Vehicle Real-time Electricity Price Reinforcement Learning
  • 相关文献

参考文献7

二级参考文献127

  • 1冯巍.电动汽车充电站10kW光伏发电系统[J].电气技术,2010,11(10):94-96. 被引量:9
  • 2徐大明,康龙云,曹秉刚.基于NSGA-Ⅱ的风光互补独立供电系统多目标优化[J].太阳能学报,2006,27(6):593-598. 被引量:38
  • 3王广民,万仲平,王先甲.二(双)层规划综述[J].数学进展,2007,36(5):513-529. 被引量:69
  • 4谭忠富,王绵斌,张蓉,乞建勋,王成文.发电侧与供电侧峰谷分时电价联动的分级优化模型[J].电力系统自动化,2007,31(21):26-29. 被引量:32
  • 5Katiraei F,Iravani R,Hatziargyriou N,et al.Microgrids management[J].IEEE Power and Energy Magazine,2008,6(3):54-65.
  • 6Liang H Z,Gooi H B.Unit commitment in microgrids by improved genetic algorithm[C]//IPEC,2010 Conference Proceedings.Singapore:IEEE,2010:842-847.
  • 7Chen S X,Gooi H B,Wang M Q.Sizing of energy storage for microgrids[J].IEEE Transactions on Smart Grid,2012,3(1):142-151.
  • 8Conti S,Nicolosi R,Rizzo S A,et al.Optimal dispatching of distributed generators and storage systems for MV islanded microgrids[J].IEEE Transactions on Power Delivery,2012,27(3):1243-1251.
  • 9Bertsimas D,Litvinov E,Sun X A,et al.Adaptive robust optimization for the security constrained unit commitment problem[J].IEEE Transactions on Power Systems,2013,28(1):52-63.
  • 10Battistelli C,Baringo L,Conejo A J.Optimal energy management of small electric energy systems including V2G facilities and renewable energy sources[J].Electric Power Systems Research,2012,92:50-59.

共引文献309

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部