期刊文献+

基于视频数据的电梯门防夹检测算法研究

Research on Elevator Door Anti-pinch Detection Algorithm Based on Video Data
下载PDF
导出
摘要 针对电梯门现有防夹保护装置的缺陷,提出了一种基于视频数据的防夹检测算法,用于在轿厢门区内检测物体;首先,采用改进的双边滤波方法滤除视频帧和背景图像中的噪声;然后,差分视频帧与背景图像,并采用极大熵粒子群算法来二值化差分图像;接着,将二值图像进行形态学滤波以检测出轿厢门区范围内的物体;最后,利用Surendra算法更新背景图像;实验结果表明,提出算法可以在轿厢门区范围内实时且准确地检测出物体,为电梯门防夹功能的改进提供了可靠的保障。 For the defects of the existing anti-pinch protection device,an anti-pinch detection algorithm is proposed to detect objects in the elevator door area.First,an improved bilateral filtering method is used to remove the noise of the video frame and background image.Then,a difference image of the video frame and the background image is calculated,and the maximum entropy particle swarm optimization algorithm is employed to obtain binary image of the difference image.Next,objects in the door area are detected from the binary image by morphology processing.Final,the Surendra algorithm is adopted to update the background image.Experimental results show that the proposed algorithm can detect objects accurately in the elevator door area.It provides a reliable guarantee for the improved anti-pinch function of elevator door.
作者 张磊 Zhang Lei(Special Equipment Inspection & Testing Institute of Fengtai District, Beijing 100161, China)
出处 《计算机测量与控制》 2019年第2期148-150,155,共4页 Computer Measurement &Control
关键词 防夹检测 物体检测 双边滤波 Surendra算法 极大熵粒子群 anti-pinch detection object detection bilateral filtering Surendra algorithm maximum entropy particle swarm optimization
  • 相关文献

参考文献7

二级参考文献41

  • 1郝颖明,朱枫.2维Otsu自适应阈值的快速算法[J].中国图象图形学报(A辑),2005,10(4):484-488. 被引量:120
  • 2张晖,董育宁.基于视频的车辆检测算法综述[J].南京邮电大学学报(自然科学版),2007,27(3):88-94. 被引量:25
  • 3刘相莹.智能交通中的车辆检测技术及其发展.科技信息(学术研究),2007,(28):269-270.
  • 4马英俊.电梯门保护装置探讨.中国电梯,2008,19(7):35-41.
  • 5Stringa E, Regazzoni C S. Real-time video-shot detection for scene surveillance applications[J]. IEEE Network, 2000, 9(1): 69-79.
  • 6LEI MANCHUN, DAMIEN L, PIERRE G, et al. A video - based real- time vehicle counting system using adaptive background method [ C]. IEEE International Conference on Signal Image Technology and Internet Based Systems,2008: 523 - 528.
  • 7Analog Devices, Inc. ADSP - BF561 EZ - KIT lite evalua- tion system manual [ M ]. USA : Analog Devices, Ine ,2008.
  • 8Analog Devices, Inc. ADSP - BF61 blackfin processor hard- ware reference [ M ]. USA: Analog Devices, Inc ,2010.
  • 9STAUFFER C, GRIMSON W E L. Adaptive back- ground mixture models for real-time tracking [C]. Fort Collins, CO: IEEE Computer Society Confer- ence on Computer Vision and Pattern Recognition, 1999: 246-252.
  • 10SONG Xue-hua, CHEN Jing-zhu, HE Chong, et al. A robust moving objects detection based on improved Gaussian mixture model[C]. Washington DC, USA: 2010 International Conference on Artificial Intelli- gence and Computational Intelligence, 2010: 54-58.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部