期刊文献+

ZYNQ的卷积神经网络硬件加速通用平台设计 被引量:2

Design of Hardware Acceleration General Platform for CNN Based on ZYNQ
下载PDF
导出
摘要 近年来卷积神经网络(CNN)在人工智能领域备受关注,被越来越多应用到实际生产中。为了较好地实现工程应用,需要将算法固化到嵌入式平台上。由于卷积神经网络的数据计算并行度高、计算量大,现场可编程门阵列成为对其进行硬件加速的重要工具。本文基于Xilinx ZYNQ ZC706设计实现了卷积神经网络硬件加速的通用平台,可以满足不同卷积神经网络算法模块实现硬件加速的需求。 Convolutional Neural Network is attracted more attention recently in AI field,more and more applications are used in industry field using it.In order to enhance the application value,it is meanful to implement algorithms on embedded systems.Due to the large computing quantity and high degree of parallelism,FPGA has become a conspicuous tool as a hardware accelerator of algorithms.In this paper,a novel hardware platform is designed to accelerate CNN algorithms by Verilog HDL on Xilinx ZYNQ ZC706 board,which meets the needs of different kinds of implementation of CNN design modules.
作者 冯光顺 应三丛 Feng Guangshun;Ying Sancong(School of Computer Science,Sichuan University,Chengdu 610065,China)
出处 《单片机与嵌入式系统应用》 2019年第3期3-6,9,共5页 Microcontrollers & Embedded Systems
基金 四川省科技厅科技支持项目(2016GZ0097)
关键词 ZC706 卷积神经网络 硬件加速 FPGA ZYNQ ZC706 convolutional neural network hardware acceleration FPGA ZYNQ
  • 相关文献

参考文献3

二级参考文献129

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 2Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 4Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 5Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 6Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 7Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 8LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.
  • 9LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010.
  • 10Waibe[ A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. Acoustics, Speech and Signal Processing, IEEF. Transactions on, 1989, 37(3): 328-339.

共引文献1092

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部