摘要
大数据时代下工业制造开始转向智能制造,车间生产过程变得更为智能化和自动化,基于数据信息的多目标作业车间复杂网络模型,已然成为智能制造研究的新领域之一。本文研究的主要内容有两点,其一是利用数据信息搭建一个多目标作业车间复杂网络模型;其二是在搭建的模型基础上利用模糊网络分析法寻找该模型的关键节点,选择模糊网络分析法使得关键节点评价的结果更具有客观性。最后进行仿真实验,结果表明该模型能较好地应用于实际工业生产,模糊网络分析法能有效挖掘该模型中的关键节点,证明了方法的合理性和有效性。
In the era of big data,industrial manufacturing has begun to turn to intelligent manufacturing. The workshop production process has become more intelligent and automated. The complex network model of multi-objective workshop based on data information is one of the new fields of intelligent manufacturing research. There are two main points in this paper. One is to build a complex network model of multi-objective job shop based on data information;the other is to use the fuzzy network analysis method to find the key nodes of the model,and choose the fuzzy network analysis method to make the evaluation results of key nodes more objective. Finally,the simulation results show that the model can be better applied to actual industrial production,and the fuzzy network analysis method can effectively mine the key nodes in the model,which proves the rationality and effectiveness of the method.
作者
韩佳蓉
HAN Jiarong(School of Computer Science and Technology, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353 , China)
出处
《智能计算机与应用》
2019年第2期16-20,27,共6页
Intelligent Computer and Applications
关键词
智能制造
工业大数据
多目标作业车间问题
复杂网络
模糊网络分析法
intelligent manufacturing
industrial big data
multi-objective job shop problem
complex network
fuzzy network analysis