期刊文献+

融合图像梯度方向的客户相关算法分析

Analysis of Client-related Algorithm Fusing Image Gradient Orientations
下载PDF
导出
摘要 针对人脸图像受光照变化影响导致大部分传统的依赖图像表征信息的子空间学习算法鲁棒性差这一问题,在图像梯度方向和客户相关技术的研究基础上,提出一种融合图像梯度方向的客户相关算法(CS-IGO-LDA).采用图像梯度方向来代替像素强度表示原始样本,并用客户相关方法提取每一个不同个体的样本特征向量以更好地描述不同类别之间的差异.提出的CS-IGO-LDA方法充分利用了图像梯度和客户相关方法在人脸识别中的优势.在XM2VTS人脸库上的实验证明了新算法在人脸验证方面的有效性. Most of the traditional appearance-based subspace learning algorithms have poor robustness because human face images are affected by light changes.Based on studies of image gradient orientations and client-related technology,a client-related algorithm fusing image gradient orientations(CS-IGO-LDA)was proposed.For a better description of the discrepancies between different classes,the original sample was represented by image gradient orientations instead of pixel intensity,and client-related algorithm was introduced to extract sample feature vector of each individual.The CS-IGO-LDA makes full use of the merits of IGO and client-related technique.The results obtained from XM2VTS face database show the effectiveness of the new method on face verification.
作者 许常青 XU Changqing(College of Internet of Things Engineering, Jiangsu Vocational College of Information Technology, Wuxi, Jiangsu 214000, China)
出处 《宜宾学院学报》 2018年第12期14-17,23,共5页 Journal of Yibin University
基金 江苏高校品牌专业建设工程资助项目"江苏信息职业技术学院物联网应用技术专业建设项目"(PPZY2015C239)
关键词 客户相关 图像梯度方向 人脸识别 人脸验证 client-related image gradient orientations face recognition face verification
  • 相关文献

参考文献2

二级参考文献27

  • 1张莉,孙钢,郭军.基于K-均值聚类的无监督的特征选择方法[J].计算机应用研究,2005,22(3):23-24. 被引量:29
  • 2Boutcmedjet S, Bouguila N, Ziou D. A Hybrid Feature Extraction Selection Approach for High-Dimensional Non-Gaussian Data Cluste- ring. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31 (8) : 1429-1443.
  • 3Boutsidis C, Mahoney M W, Drineas P. Unsupervised Feature Selection for Principal Components Analysis // Proe of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, USA, 2008:61-69.
  • 4Cai D, He X F, Han J W. Sparse Projections over Graph//Proe of the 2lst AAAI Conference on Artifieial Inte|Iigence. Chicago, USA, 2008:610-615.
  • 5Xu Z L, King I, Lyu M R T, et al. Discriminative Semi-Supervised Feature Selection via Manifold Regularization. IEEE Trans on Neu- ral Networks, 2010, 21 (7) : 1033-1047.
  • 6He X F, Cai D, Niyogi P.' Laplacian Score for Feature Selection// Proc o: the Advances in Neural lnfonnat:,n Process:,r,g Systems lg. Vancouver, Canada, 2005:507-514.
  • 7Cai D, Zhang C Y, He X F. Unsupervised Feature Selection for Multi-cluster Data// Proc of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washing- ton, USA, 2010:333-342.
  • 8Li Z C, Yang Y, Liu J, et al. Unsupervised Feature Selection Using Nonnegative Spectral Analysis // Proc of the 26th AAAI Conference on Artificial Intelligence. Toronto, Canada, 2012 : 1026-1032.
  • 9Zhu X F, Huang Z, Yang Y, et al. Self-Taught Dimensionality Reduction on the High-Dimensional Small-Sized Data. Pattern Recognition, 2013, 46(1 ): 215-229.
  • 10He X F, Niyogi P. D.:cality Preserving Projections// Proe of the Advances in Neural Information Processing Systems 16. Vancouver, Canada, 2003 : 153-160.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部