期刊文献+

基于d维多粒子纠缠态的(t,n)门限量子秘密共享

(t,n)Threshold Quantum Secret Sharing Based on d-Dimensional Multi-Particle Entanglement State
下载PDF
导出
摘要 为了突破Hilbert空间2维度的局限性,解决秘密重建过程中部分参与者缺席的问题,使用d维多粒子纠缠态,提出了一个(t,n)门限量子秘密共享方案。秘密分发者制备n个d维2粒子纠缠对,将第2个粒子分别分发给n个参与者。当秘密分发者选择自己手中t个粒子进行联合投影测量时,纠缠交换使得参与者手中的对应t个粒子坍塌成一个t粒子纠缠态。这t个参与者通过QFT变换和Pauli运算将份额加入t粒子纠缠态。最终,共享的秘密由这t个参与者一起合作恢复。安全性分析表明,该方案能抵抗截获-测量-重发攻击、纠缠-测量攻击、合谋攻击和伪造攻击。 In order to overcome the limitation on 2-dimension of Hilbert space,and solve the problem that some participants cannot attend reconstructing process of the shared secret,a(t,n)threshold quantum secret sharing scheme is proposed by using maximally d-dimensional multi-particle entanglement state.The dealer prepares n d-dimensional 2-particle entangled pairs and distributes the 2nd particle to n participants respectively.When the dealer chooses t particles in his hand for joint projection measurement,the entanglement swapping causes the corresponding t particles in participants'hands to collapse into a t-particle entangled state.These t participants add their share to the t-particle entangled state through QFT transformation and Pauli operation.Eventually,the shared secret is recovered by these t participants.Security analysis shows that the proposed scheme can resist intercept-resend attack,entangle-measure attack,collusion attack,and forgery attack.
作者 宋秀丽 徐建坤 SONG Xiuli;XU Jiankun(College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing400065,China;Chongqing Key Laboratory of Network Information Security Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第5期89-95,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61772098 No.61772099) 重庆市科学技术委员会基础科学与前沿技术项目(No.cstc2016jcyj A0571) 重庆邮电大学高端人才培养项目(No.BYJS2016002)
关键词 门限量子秘密共享 d维多粒子纠缠态 纠缠交换 联合投影测量 threshold quantum secret sharing d-dimensional multi-particle entanglement state entanglement swapping joint projection measurement
  • 相关文献

参考文献3

二级参考文献59

  • 1B. Schneier, Applied Cryptography, John Wiley Sons, New York (1996).
  • 2M. Hillery, V. Buzek, and A. Berthiaume. Phys. Rev. A 59 (1999) 1829.
  • 3A. Karlsson, M. Koashi, and N. Imoto, Phys. Rev. A 59 (1999) 162.
  • 4R. Cleve, D. Gottesman, and H.K. Lo, Phys. Rev. Lett. 83 (1999) 648.
  • 5F.G. Deng, G.L. Long, and X.S. Liu, Phys. Rev. A 68 (2003) 042317.
  • 6F.G. Deng and G.L. Long, Phys. Rev. A 69 (2004) 052319.
  • 7G.L. Long, F.G. Deng, C. Wang, et al., Front. Phys. China 2(3) (2007) 251.
  • 8D.Z. Huang, Z.G. Chen, Y. Guo, et al., J. Phys. Soc. Jpn. 76 (2007) 124001.
  • 9C.Y. Li, X.H. Li, F.G. Deng, and H.Y. Zhou, Chin. Phys. Soc. 17 (2008) 2352
  • 10A.C.A. Nascimento, J.M. Quade, and H. Imai, Phys. Rev. A 64 (2001) 042311.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部