摘要
汽车测距系统在驾驶辅助系统中越来越重要,基于视觉的测距系统成本低实现简单,但精度易受算法本身的影响。提出一种基于双目视觉的实时车辆检测和车距计算的算法,算法利用类Haar特征和AdaBoost算法训练分类器进行车辆检测,提取车辆候选区域。同时,该算法提出一种基于双目系统的交叉再检测的方法降低误检。立体匹配算法方面采用一种由粗到精的匹配策略,提高双目测距算法的精度和性能。实验结果表明该方法具有精度高、鲁棒性强的优点。
Ranging system on vehicle is widely used in driving assistance system.Vision-based ranging system has the advantages of lower cost and easier implementation.However,its accuracy depends on the algorithm itself.Proposes a real-time vehicle detection and inter-vehicle distance estimation algorithm based on binocular vision system.The method uses Haar-like features and AdaBoost algorithm to run a classifier,by which we can do vehicle detection and extract vehicle candidate areas.Meanwhile,uses a crossover re-detection method based on binocular vision to reduce false detection in the algorithm.And adopts a coarse-to-fine stereo matching scheme to improve the accuracy and time performance of binocular distance estimation algorithm.Experimental results show the high accuracy and robustness of the proposed method.
作者
陈攀
CHEN Pan(College of Computer Science,Sichuan University,Chengdu 610065)
出处
《现代计算机》
2019年第5期60-64,78,共6页
Modern Computer
关键词
汽车测距
双目视觉
类HAAR特征
交叉再检测
由粗到精
Vehicle Distance Estimation
Binocular Vision
Haar-like Features
Crossover Re-Detection
Coarse-to-Fine