期刊文献+

基于双目视觉的车辆检测及测距 被引量:3

Vehicle Detection and Inter-Vehicle Distance Estimation Based on Binocular Vision
下载PDF
导出
摘要 汽车测距系统在驾驶辅助系统中越来越重要,基于视觉的测距系统成本低实现简单,但精度易受算法本身的影响。提出一种基于双目视觉的实时车辆检测和车距计算的算法,算法利用类Haar特征和AdaBoost算法训练分类器进行车辆检测,提取车辆候选区域。同时,该算法提出一种基于双目系统的交叉再检测的方法降低误检。立体匹配算法方面采用一种由粗到精的匹配策略,提高双目测距算法的精度和性能。实验结果表明该方法具有精度高、鲁棒性强的优点。 Ranging system on vehicle is widely used in driving assistance system.Vision-based ranging system has the advantages of lower cost and easier implementation.However,its accuracy depends on the algorithm itself.Proposes a real-time vehicle detection and inter-vehicle distance estimation algorithm based on binocular vision system.The method uses Haar-like features and AdaBoost algorithm to run a classifier,by which we can do vehicle detection and extract vehicle candidate areas.Meanwhile,uses a crossover re-detection method based on binocular vision to reduce false detection in the algorithm.And adopts a coarse-to-fine stereo matching scheme to improve the accuracy and time performance of binocular distance estimation algorithm.Experimental results show the high accuracy and robustness of the proposed method.
作者 陈攀 CHEN Pan(College of Computer Science,Sichuan University,Chengdu 610065)
出处 《现代计算机》 2019年第5期60-64,78,共6页 Modern Computer
关键词 汽车测距 双目视觉 类HAAR特征 交叉再检测 由粗到精 Vehicle Distance Estimation Binocular Vision Haar-like Features Crossover Re-Detection Coarse-to-Fine
  • 相关文献

参考文献2

二级参考文献22

  • 1雷克萨斯LS460四大安全新技术亮相日内瓦车展[EB/OL].[2010-04-15].http://www.autoelectronics.eetchina.com/ART_8800409099_2100003_NT 51853e97.HTM,2006-03-06.
  • 2富士重工展示"EyeSight"的立体摄像头及图像处理LSL[EB/OL].[2010-04-15].http://www.china-vision.net/news/sjyj/yw/200806/36419.html,2008-06-11.
  • 3Bumblebee2[EB/OL].[2010-04-15].http://www.ptgrey.com/products/stereo.asp,2010.
  • 4谢毅.基于DSP及机器视觉的道路识别与障碍物检测[D].重庆:重庆大学自动化学院,2009:1-68.
  • 5ZHANG Zhengyou.A flexible new technique for camera calibration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
  • 6TRUCCO E,VERRI A.Introductory techniques for 3-D computer vision[M].Upper Saddle River,USA:Prentice Hall,1998.
  • 7Han S, Han Y, Hahn H. Vehicle detection method using Haar-like feature on real time system [ J ]. World Acade-my of Science, Engineering and Technology, 2009, 59: 455-459.
  • 8Sivaraman S, Trivedi M M. Looking at vehicles on the road : A survey of vision-based vehicle detection, tracking, and behavior analysis [ J ]. Intelligent Transportation Sys- tems, IEEE Transactions on, 2013, 14(4) : 1773-1795.
  • 9Nguyen V D, Nguyen T T, Nguyen D D, et al. A fast evolutionary algorithm for real-time vehicle detection [ J ]. IEEE Transactions on Vehicular Technology, 2013.
  • 10Tzomakas C, yon Seelen W. Vehicle detection in traffic scenes using shadows [ C ]//IR-INI, INSTITUT FUR NU- ERO1NFORMATIK, RUHR-UNIVERSITAT. 1998.

共引文献18

同被引文献28

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部