摘要
针对蚁狮算法在平衡开发能力与探索能力不足的缺点,提出了具体有随机分形自适应搜索策略的改进算法。在该策略中,蚂蚁利用随机分形搜索方程提高算法的探索能力;蚁狮利用自适应搜索方程在最优位置进行精细搜索,以提高算法的开发能力。对3个单峰、3个多峰标准测试函数进行寻优,仿真结果表明,相比于其他算法,所提出的改进算法很好地平衡了自身的开发能力和探索能力,显著提高了全局优化能力和收敛速率。
For the problems of the unbalanced capability between exploration and exploitation of ant lion optimizer(ALO),an improved ALO algorithm with stochastic fractal and self-adaption searching strategy(SFSALO)is proposed.On the one hand,the stochastic fractal searching function is used for ant so as to improve the capability of exploration.On the other hand,self-adaption searching method is adopted for ant lion at the best position in order to improve the convergence precision and the exploitation ability.The simulation on 3 single-peak and 3 multi-peak benchmark functions shows that the proposed algorithm can fully balances the exploration and exploitation and significantly improves the global optimizationability and the convergence speed.
作者
赵克新
黄长强
王渊
ZHAO Ke-xin;HUANG Chang-qiang;WANG Yuan(School of Aeronautics of Engineering,Air Force University,Xi’an 710038,China)
出处
《火力与指挥控制》
CSCD
北大核心
2019年第2期41-45,49,共6页
Fire Control & Command Control
基金
国家自然科学基金(61601505)
航空科学基金资助项目(20155196022)
关键词
蚁狮优化算法
随机分形
自适应
函数优化
ant lion algorithm
stochastic fractal
adaptive method
function optimization