期刊文献+

基于m-Capon的多阵列直接定位算法

Multi-array Direct Position Determination Based on m-Capon
下载PDF
导出
摘要 多重信号分类(Music)直接定位算法需要先估计目标个数,然后根据目标个数估计确定其噪声子空间,进而得到空间谱函数。在低信噪比情况下,目标个数估计的错误往往会导致直接定位算法的失效。针对上述问题,提出了一种基于m-Capon的多阵列目标直接定位算法。该算法综合了Capon算法无需目标个数估计和Music算法定位性能较高的优点,在不进行目标个数估计的情况下,利用近似估计的方法得到逼近于Music算法的空间谱函数,解决了Capon算法在低信噪比下性能不足的问题。仿真结果表明,在无需估计目标个数的条件下,所提算法的性能与Music算法的性能大致相同,且逼近于克拉美罗下界。 The multi-signal classification(Music)algorithm needs to estimate the number of targets first and determine the noise subspace according to the estimated target number,and then the spatial spectral function is obtained. In the case of low signal-to-noise ratio,the error of the estimated number of targets often leads to the failure of the direct positioning algorithm. A multi-array target direct positioning algorithm based on m -Capon is proposed to solve the problems.This algorithm combines the advantages of Capon without estimating the target number and the higher positioning performance of Music. Without the estimation of the target number,the approximate spectral method is used to approximate the spatial spectrum function of Music. The algorithm solves the problem of low positioning performance of Capon algorithm at low SNR. The simulation results show that the performance of the proposed algorithm is almost the same as that of Music algorithm and approachs CRLB without estimating the number of targets.
作者 谭智文 骆吉安 左燕 TAN Zhi-wen;LUO Ji-an;ZUO Yan(School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《火力与指挥控制》 CSCD 北大核心 2019年第1期45-50,共6页 Fire Control & Command Control
基金 国家自然科学青年基金资助项目(61703129)
关键词 多重信号分类 多阵列 直接定位 克拉美罗界 multiple signal classification multi-array direct position determination cramer-rao bound
  • 相关文献

参考文献6

二级参考文献38

  • 1杨士英,罗景青.利用误差椭圆消除虚假定位的算法研究[J].电子对抗技术,2004,19(5):3-6. 被引量:11
  • 2何缓,杨春山,傅文斌.无源雷达定位精度分析[J].现代雷达,2007,29(5):1-3. 被引量:22
  • 3曾勇虎,王国玉,陈永光,汪连栋.动态雷达目标RCS的统计分析[J].电波科学学报,2007,22(4):610-613. 被引量:18
  • 4Van Trees Harry L. Optimum Array Processing: Part Ⅳ of Detection, Estimation, and Modulation Theory. New York: Wiley, 2002: 1139-1285.
  • 5Barabell A J. Improving the resolution of eigenstructured based direction finding algorithms. Proc. ICASSP, Boston, MA, 1983: 336-339.
  • 6Schmidi R O. Multiple emitter location and signal parameter estimation. IEEE Trans. on AP, 1986, 34(3): 243-258.
  • 7Roy R and Kailath T. ESPRIT--Estimation of signal parameters via rotational invariance techniques. IEEE Trans. on ASSP, 1989, 38(7): 984-995.
  • 8Viberg M, Ottersten B, and Kailath T. Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Trans. on SP, 1991, 39(11): 2436-2449.
  • 9Wax M and Kailath T. Detection of signals by information theoretic criteria. IEEE Trans. on ASSP, 1985, 33(2): 387- 392.
  • 10Wax M and Kallath T. Detection of signals by information theoretic criteria. IEEE Trans. on ASSP, 1985, 33(2): 387- 392.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部