期刊文献+

基于压缩感知理论的缺失数据集下线损预测模型 被引量:19

Line Loss Prediction Model Under Missing Data Set Based on Compressed Sensing Theory
下载PDF
导出
摘要 线损预测是电网企业进行线损管理的基础,而电力系统中数据收集与传输过程中不可避免出现各种异常状况,导致线损数据缺失,影响线损预测精度。为解决这一问题,应用压缩感知理论研究矩阵稀疏变换方法和矩阵重构算法,实现电网运行缺失数据的补全与重建,利用基于自适应噪声的完整集成经验模态分解建立线损预测模型,完成缺失数据集下的线损预测。某10 kV配电网算例验证结果表明,在数据量较大或数据缺失情况较严重的情况下,基于压缩感知理论的数据恢复方法能比传统方法更好地修复原始数据,恢复原始数据的变化趋势,提高线损预测精度。 Line loss prediction is the basis for line loss management by power grid enterprises, while avoidable abnormal conditions in data collection and transmission in the power system may cause line loss data missing and affect prediction precision. To solve the problem, this paper applies the compressed sensing theory in studying the method of matrix sparse transformation and matrix reconstruction so as to finish completion and reconstruction of missing data. It uses complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to establish the line loss prediction model and finish line loss prediction under missing data set. An actual example of one 10 kV power distribution network has verified that under the condition of large data amount or serious data missing, the data repairing method based on the compressed sensing theory is preferable to repair original data, recover variation trend of original data and improve line loss prediction precision compared with traditional methods.
作者 刘东升 代盛国 商学斌 顾洁 金之俭 王颖琛 李煜 LIU Dongsheng;DAI Shengguo;SHANG Xuebin;GU Jie;JIN Zhijian;WANG Yingchen;LI Yu(Guangzhou Power Supply Bureau Co., Ltd., Guangzhou, Guangdong 510620, Chin;Xishuangbanna Power Supply Bureau of Yunnan Power Grid Co., Ltd., Jinghong, Yunnan 666100,China;School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China)
出处 《广东电力》 2019年第2期80-86,共7页 Guangdong Electric Power
基金 国家重点基础研究发展计划资助项目(2016YFB 0900101)
关键词 压缩感知 数据缺失 线损预测 数据修复 基于自适应噪声的完整集成经验模态分解 compressed sensing data missing line loss prediction data repairing complete ensemble empirical mode decomposition with adaptive noise
  • 相关文献

参考文献16

二级参考文献237

共引文献1036

同被引文献242

引证文献19

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部