摘要
随着新一轮电力市场化改革的深入,为了促进分布式储能有效参与电网调峰,提出了对其规模化聚合管理的思路;建立了分布式储能聚合商以竞价形式参与电网调峰调度的优化模型。在日前调度中,聚合商根据电力交易中心公布的次日调峰需求,通过对分布式储能行为特性预测,并按阶梯报价策略参与竞价;电力交易中心以最小化调峰调度成本为目标优化调度计划。在实时调度中,考虑了储能行为特性日前预测误差和电池损耗,聚合商以最大化自身利益为目标优化充放电出力,使得聚合商在满足日前中标出力的同时,利用市场电价差获利。仿真算例表明,分布式储能聚合商以竞价形式参与电网调度既能减少电网调峰调度成本,还可以达到削峰填谷的效果,储能设备的损耗成本是影响充放电出力的关键因素。
With the new round of power market in-depth reform, we propose an concept of large-scale aggregation management and establish an optimization model for distributed energy storage aggregation providers to participate in power grid peaking scheduling in the form of bidding. In the day-to-day scheduling, the aggregation providers participate in the bidding by predicting the characteristics of distributed energy storage system behavior according to the next-day peaking demand announced by the power trading center;the power trading center optimizes the dispatch plan with a goal of minimizing the peaking scheduling cost. In the real-time scheduling, the aggregation providers optimize the charge and discharge outputs with a goal of maximizing its own interests considering the energy storage system characteristics of the previous prediction error and losses so that the aggregation providers could profit from the market electricity price while satisfying the previous successful bid. Simulation examples show that distributed energy storage aggregation providers participating in the grid dispatching could reduce the cost of peak shaving scheduling and achieve the effect of peak shaving in the form of bidding. The loss cost of energy storage system is the key factor affecting the outputs of charge and discharge.
作者
林立乾
米增强
贾雨龙
范辉
杜鹏
LIN Liqian;MI Zengqiang;JIA Yulong;FAN Hui;DU Peng(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Source,North China Electric Power University,Baoding 071003,Hebei,China;State Grid Hebei Electric Power Company,Shijiazhuang 050000,Hebei,China)
出处
《储能科学与技术》
CAS
CSCD
2019年第2期276-283,共8页
Energy Storage Science and Technology
基金
国家电网公司科技项目项目(KJGW2018-014)
中央高校基本科研业务费专项资金项目(2018QN075)
关键词
电力市场
分布式储能
聚合商
调峰
调度模型
electricity market
distributed energy storage
aggregation provider
peak shaving
scheduling model