摘要
本文研究了稀疏分裂可行问题.通过将分裂可行问题转化为一个目标函数为凸函数的稀疏约束优化问题,设计一种梯度投影算法来求解此问题,获得了算法产生的点列可以收敛到稀疏分裂可行问题的一个解.用数值例子说明了算法的有效性.
In this paper,we study the solution of sparsity split feasibility problem.By transforming the sparsity split feasibility problem into an sparsity constraints optimization problem whose objective function is convex,we design a gradient projection algorithm for solving the problem,and get that this method can converge to a solution.The numerical example is given to prove the effectiveness of the algorithm.
作者
孙军
屈彪
SUN Jun;QU Biao(School of Management,Qufu Normal University,Rizhao 276826,China)
出处
《数学杂志》
2019年第2期227-233,共7页
Journal of Mathematics
基金
国家自然科学基金(11271226)
关键词
稀疏分裂可行问题
梯度投影算法
收敛性
sparsity split feasibility problem
gradient projection method
convergence